Tay-Sachs Disease

“Genomics and Medicine”
Alison Keiper
About Tay-Sachs

- Autosomal, recessive
- Progressive neurodegenerative disorder
- In the most severe cases, it’s fatal by age 2 or 3
- Caused by a mutation in both alleles of a gene on chromosome 15
The Tay-Sachs Gene

- This gene codes for an enzyme found in lysosomes, an organelle in eukaryotic cells that breaks down large molecules into its components that can be recycled by the cell.

- This specific enzyme in the lysosome is absent or at extremely low, inefficient levels in Tay-Sachs individuals.
 - Leads to an accumulation of gangliosides, a lipid in neurons.

- The progression of Tay-Sachs is directly related to the amount of accumulation of gangliosides.
Lipid Accumulation
Diagnosing Tay-Sachs

- Characterized by developmental retardation in infants
- Followed by paralysis, dementia, blindness, and eventually death
- “Cherry-red” spot surrounded by a gray-white area
- Blood test to detect a deficiency in the lysosomal enzyme
Since the causative gene is known, prenatal screening was established in the 1970s
- Targeted towards Ashkenazi Jews because it’s most prevalent among them
- Has led to a 90% reduction of Tay-Sachs
1. Prevent or slow the production of gangliosides
 - Reduce them to a level that the deficient enzymes can handle
 - Studies inconclusive, still ongoing

1. Normal genes are delivered to the brain to increase the breakdown of gangliosides
 - Delayed the onset of the disease
 - Decreased inflammation of neurons
 - Improved function
 - Extended their life
Late Onset Tay-Sachs

- Unfortunately, there are no treatments for late onset Tay-Sachs.

- Ganglioside synthesis inhibitor shows promise
 - The effectiveness is limited in infants because it’s unknown how much irreversible damage occurs before birth.