Hutchinson-Gilford Progeria Syndrome

Maheetha Bharadwaj

Retrieved from the Progeria Research Foundation Website: progeriaresearchfoundation.org
<table>
<thead>
<tr>
<th>Table of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and History</td>
</tr>
<tr>
<td>Research of Erikkson et al. (2003)</td>
</tr>
<tr>
<td>Causes: Mechanisms of mRNA Splicing</td>
</tr>
<tr>
<td>Truncated Lamina A: Progerin</td>
</tr>
<tr>
<td>Reverse Transcriptase Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Effects</td>
</tr>
<tr>
<td>Treatment: Macro and Molecular</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
</tbody>
</table>
Introduction and History

- The Hutchinson-Gilford Progeria Syndrome (Progeria): fatal disease that causes rapid aging
- Only 1 in 8 million have this disease
- First appearance: Hutchinson (1886)
- Second appearance: Gilford (1904)
- Only roughly 60 cases have been reported since: (Debrusk 1972, Brown et al. 1985 & 1986)
- Eriksson et al. 2003—first research done to show actual causes and effects
Research of Eriksson et. al (2003)

1. Out of 23 progeria, he found that 20 had a *de novo* mutation in LMNA gene (codes for nuclear Lamina A).

2. 18 out of 20: GGC → GGT
 - 1 out of 20: GGC → AGC
 - 1 out of 20: GAG → AAG

 The causes of Progeria in the other three cases are unknown.

3. Creation of splice site
Mechanisms of mRNA Splicing

- **Introns vs. Exons**
- **Donor acceptor pairs:** GT-AG, GC-AG, AT-AC, and GT-GG. (Fong et al. 2006). The base pair progressions, GT, GC, and AT have the potential to set of a splice site.
- The splice site signals the excision of genetic information, leading to a deletion of 150 bps, and 50 amino acids.

Retrieved from:
Truncated Lamina A: Progerin

Normal Wild-type Lamina contains two modifications (attachments): the farsynal group and the terminal group. Removal of two groups → successful integration into Nuclear Membrane.

Truncated Lamina A (Progerin): does not have terminal group. Cannot successfully integrate, and messes up integration of future Laminas.

Lamina keeps stable structure
And Progerin ruins it; nuclear lamina
Becomes lobular. Funky Nuclear Lamina →
Reverse Transcriptase Polymerase Chain Reaction

- mRNA is copied into DNA by using an oligo dT primer. Certain Heat-Stable DNA polymerase known as Taq polymerase is used for further transcription.
- Denaturation of DNA
- mRNA primers added to separate DNA strands. Taq polymerase starts to add on base pairs from the RNA primers. Total of 4 strands from 1 mRNA.
Effects

• Most prevalent of rapid aging symptoms: hair loss early, bulging out eyes, visible veins on body and head, Egg-shaped head, atheroscleosis, deformed bones, calcium loss, and other growth deformities
Treatment
Macro and Molecular

Macro:
- Giving increased Growth hormone
- Give medication to reduce fat buildup in the Coronary Arteries, or coronary bypass surgery
- Cao et al. (2011): rapamycin abolished nuclear blebbing, delayed the onset of cellular senescence, and enhanced the degradation of progerin in HGPS cells. (ONIM)

Molecular:
- Glynn and Clover (2005): farnesylidation inhibition (ONIM)
Conclusion: Recap

- Progeria is a disease that causes rapid aging and is caused by a base-pair substitution in the LMNA gene.
- Effects include abnormally projecting eyes and other growth defects.
- Treatments include FTI’s that inhibit the progerin from reaching nucleus, increased supplements of Gh and calcium, and medication to reduce effects of atherosclerosis.
Thank You
Questions?
Bibliography

- ONIM

Dr. Margaret Hunt. “Real Time PCR”.

Bibliography

Bibliography