Fatal Familial Insomnia: A genetic prion disease
Background information:

About Prions

• Structure
 – Misfolded proteins
 – Not alive; no genetic material

• Pathogenesis
 – Convert normal proteins into prions
 – Form amyloid folds in the brain

• Transmission
 – Acquired (ingestion)
 – Sporadic
 – Familial (genetic)
 • Inherited
 • De novo mutation

Prion diseases

In other organisms
• spongiform encephalopathy (Mad-Cow disease)
• Scrapie
• Chronic Wasting Disease

In humans
• Fatal Familial insomnia
• Creutzfeldt-Jakob disease
• Gerstmann-Straussler-Sheinker syndrome
• Kuru
Symptoms and Classical Diagnosis

- Symptoms
 - All prion diseases cause neurodegeneration:
 - Ataxia (difficulty walking)
 - Dementia
 - Dysphagia (difficult swallowing)
 - Myoclonus (jerky movements)
 - FFI-specific symptoms:
 - Mental instability (phobias, paranoia, panic)
 - Hallucinations
 - Complete insomnia
 - Dementia
 - Muteness
 - Coma
 - Leads to coma and death in 6 to 24 months

Classical diagnosis of prion diseases
- Prions present in brain tissue
- Degeneration of the thalamus
- Buildup of amyloid plaques in the brain
- MRI and PET scans
- CSF testing
Classical Treatment
(or lack thereof)

• There is no effective cure.

• Vaccination is impossible because there is no immune response.

• Extreme measures are taken to induce sleep are unsuccessful.
 – Sedatives
 – Sensory deprivation
 – Coma induction
 • Even when comatose, patients are not asleep.

• Neurological symptoms may be partially alleviated
 – Antiepileptic drugs
 – Feeding tubes
Genomic study of FFI

- PRNP is the gene that encodes the mammalian prion protein.
 - Present in all individuals
 - Located on Chromosome 20
 - First mapped in 1986

- There are two **Conformational isoforms** of the mammalian prion protein:
 - PrP$_c$, the normal cellular isoform
 - PrP$_{Sc}$, the ‘scrapie’ isoform
 - The conversion of PrP$_c$ to PrP$_{Sc}$ causes prion diseases

- Mutations in PRNP can cause conversion of PrP$_c$ to PrP$_{Sc}$
 - These mutations are inherited dominantly
 - Can also arise from *de novo* mutations
 - Heterozygosity vs. homozygosity
Mutations in PRNP

- Point mutations in PRNP can lead to prion diseases
 - There are 42 known point mutations in PRNP, 24 of which produce amino-acid changes.
 - Among these 24 amino-acid changes many are ‘neutral polymorphisms,’ which do not contribute to disease.
 - Specific point mutations leading to CJD, GSS, and FFI have been identified
 - For FFI, two mutations are required
 - Prerequisite: Homozygosity or heterozygosity for Methionine at codon 129
 - Both can develop FFI; homozygotes have more severe symptoms
 - Replacement of aspartic acid by asparagine at codon 178

Map of the PRNP gene and its known variations. Pathogenic variations are in pink, neutral variations in blue.
Prevalence and Penetrance

• Prion diseases are exceedingly rare in humans
 – 300 cases per year in the U.S.

• Genetically-based FFI is most common in Western and Central Europeans, but has also been observed in Chinese

• Prevalence of Sporadic vs. acquired vs. Genetic cases
 – Most prion disease cases are not inherited
 • 90% are sporadic or acquired
 – About 10% of prion diseases are genetic
 • This proportion is higher for FFI

• Penetrance
 – There is disagreement about FFI’s level of penetrance
 – Different studies and sources present contradictory evidence
 • Mutations in PRNP generally, but not always, lead to conversion of PrPc to PrPsc
 • Not all members of affected families develop FFI
Genomic Approaches to Diagnosis and Treatment

- New diagnostic protocol: Genetic testing
 - Sequence analysis of PNRP
 - Can determine homo- or heterozygosity
 - Uses:
 - Determine whether a case is sporadic or genetic
 - Predict whether an at-risk individual exhibits the mutation
 - Predict the course of the disease based on homo- or heterozygosity

- Genetic counseling
 - Prenatal and pre-implantation diagnosis for family planning
 - Testing for family members of FFI sufferers

- Gene therapy has been unsuccessful so far
- Further exploration of the PRNP gene mutation may lead to gene therapy in the future

"PRNP Prion Protein [Homo sapiens]." National Center for Biotechnology Information.