Clarifying the stem cell debate
By John Thomas
Genomics and Medicine
Stem cell basics

- **Stem cells**
 - Capable of dividing and renewing themselves for long periods without differentiating
 - Not fully specialized
 - Can give rise to specialized cells

- **Sources**
 - Embryonic stem cells
 - Adult stem cells
 - Umbilical cord
 - Amniotic fluid
Potential Uses

- Knowledge of development from single cell to multi-cell
- Knowledge of tissue repair
- Therapeutic implications - most debated
- Important to recognize that these technologies are very far off in the future; least known about, most debated
Stem cell derivation

- IVF - must be removed at the blastocyst stage
Legislative History

- 1994: Congress blocks federal funding of embryo research
- 1998: First isolation of human ES (using private funding)
- 2001: President Bush makes federal funding available for human ES cell research (only for currently existing lines - limited, defective)
- 2004: NJ includes stem cell research funds in budget
- 2004: Proposition 71 approved in CA
- 2005-2007: Legislation considered in other states (DE, MA, IN, MD)
- April 11, 2007: Senate passed bill to expand federal funding for ES cell research (Bush promises to veto)
- June/July 2007: Prop 71 funds
Issues

- Adult vs. embryonic
- Status of embryos - definitions of life (conception, survival, religious)
- Cloning fears
- Family
- Media battle
- IVF
- Regulation
- Care vs. Cure; ends vs. means; protecting vs. improving life - which is more important?
- Irony - If we never research, we will never find out
Therapeutic vs. Reproductive Cloning

Reproductive Cloning
- Female
- Holing pipette
- Nucleus removed from egg
- Nucleus inserted
- Clonal zygote
- Clonal embryo
- Embryo implanted into uterus
- Clonal baby

Therapeutic Cloning
- Female
- Female or male donor
- Body cell (Skin, muscle, hair, etc.)
- Nucleus removed from egg
- Nucleus inserted
- Clonal zygote
- Grow in culture to produce embryo
- Blastoicyst
- Embryonic stem cells
- Harvest stem cells from inner cell mass
- Produce cells of choice
- Bone tissues
- Muscle tissues
- Nerve tissues
- Transplant tissue back into donor

Figure 11.20 Reproductive Cloning and Therapeutic Cloning In reproductive cloning, the goal is to produce a cloned baby. In therapeutic cloning stem cells that are genetically identical to the cells taken from a patient are produced to provide patient-specific stem cell therapy.
What next?

- Research in US, limited because of funding
- **Headlines:**
 - Italian Doctor Uses Stem Cells to Construct Vagina (05/30/2007, Reuters Health)
 - Cord Blood Stem Cells Produce Insulin (05/25/2007, Reuters Health)
 - Human Bone Marrow Used to Create Early Stage Sperm Cells (04/13/2007, HealthDay)
- Lung, muscle, neural tissue
- Internationally - UK, Italy, Australia, Canada, China, Israel,
- Tremendous potential - cancer, heart disease, diabetes, Parkinson’s, Alzheimer’s and many others
- We only have what we’re born with. Stem cells can change that.
Works Cited

- http://clinicaltrials.gov
- http://www.stemcellforum.org/
- http://www.icta.org/template/index.cfm