p53 and Cancer

Karina Espinoza Biochemistry 118Q
What is p53?

- A protein found inside cells
- A **stress** sensor of signals:
 - DNA damage
 - hypoxia
 - oncogene expression
 - nutrient deprivation
 - ribosome dysfunction
- In *unstressed* cells = p53 is inactive
 - MDM2 ubiquitin ligase \rightarrow degradation of p53
Today’s focus: stressor DNA damage

- p53 *senses* damaged DNA
 → aids in regulation of DNA repair

\[\textit{p53} = \textit{tumor suppressor protein} \]

prevents cancer

What is a tumor?

-a mass of tissues that result from excessive & uncontrolled cell division (can be benign or malignant)
What does p53 do?

p53 has 2 main functions

1. **Cell cycle arrest**

 = p53 STOPs cell cycle
 - until DNA is repaired

Is DNA damaged?
2. Apoptosis (cell suicide)

- p53 = transcription factor for 3 pro-apoptotic genes
- Cytochrome c release
- Caspase activation:
 - cleavage of key cell proteins that cause cell death
Cancer and p53

- p53 prevents cancer (evidence: knockout mice)
- Inheriting only 1 copy of functional p53 gene
 = predisposition to cancer (many kinds)
 - "Li-Fraumeni syndrome"
 - Patients have a 50% chance of developing cancer by 30 yrs old
 - rare condition

-Is this the only way that p53 relates to cancer?
p53 is the most commonly mutated gene in cancer

→ P53 has been found to be mutated in more than 52 kinds of cancers
How does a mutation in \(p53 \) → cancer?

*What is Cancer? Uncontrolled growth/proliferation of cells

- **Mutant** \(p53 \) can NO longer bind to DNA in an effective way = p21 protein is not made = no stop signal for cell division (no apoptosis/arrest)
- Even if DNA is damaged cell proliferates!
- = mutations propagate = malignant tumors are formed = cancer

With \(p53 \)
- \(p53^{++} \) Cell
- G1 arrested cell (DNA repair)

Without \(p53 \)
- \(p53^{-/-} \) Cell
- Failed G1 arrest
- Additional mutations
- Propagation of mutations
- Malignant cell
Using what we know about p53 → cancer therapy

- Cancers that have a p53 mutation= poor prognosis
 Why?
 - Tumor cells not likely to undergo apoptosis/cell cycle arrest when damaged by therapy
 - Radiation and chemotherapy may → secondary cancers
Gene Therapy

Introducing genetic material into cells to compensate for abnormal genes or to make beneficial protein.
Gene Therapy: Gendicine

What is Gendicine?
Recombinant Human Ad-p53 Injection

- Target cells: cancer cells (has been FDA approved for neck and head sarcomas)

- Vector: replication-defective adenovirus
 - *Viruses can infect specific cells and deliver their DNA*
 - Genetically engineered virus to have p53 gene
 - p53 will be expressed via the host’s transcription and translation processes

- Results: cancer cured (apoptosis of damaged cells)
References

- https://docs.google.com/viewer?
a=v&pid=gmail&attid=0.1.1&thid=12e6af9cde31279f&mt=application/pdf
 &url=https://mail.google.com/mail/?ui%3D2%26ik
 %3D2291030fe1%26view%3Datt%26th%3D12e6af9cde31279f%26attid
 %3D0.1.1%26disp%3Datt%26zw&sig=AHIEtbT3A-1JxdjhKvpMHewHumj0hmd6tg
- https://docs.google.com/viewer?
a=v&pid=gmail&attid=0.1&thid=12e8dabe85f7dab7&mt=application/pdf
 &url=https://mail.google.com/mail/?ui%3D2%26ik
 %3D2291030fe1%26view%3Datt%26th%3D12e8dabe85f7dab7%26attid
 %3D0.1%26disp%3Datt%26realattid
 %3Df_gkyn2qf00%26zw&sig=AHIEtbQQKgdMULMkRPotUaKcYTPwg
 m5kww
- http://jnci.oxfordjournals.org/content/88/20/1442.full.pdf+html