Department History and Information

People in the Department of Developmental Biology, a unit of the Stanford University School of Medicine, explore mysteries of embryonic growth, stem cells, signaling, gene regulation, evolution and human origins, microbial genetic circuitry, and development as it relates to health and disease. Within this highly collaborative department you will find an extraordinary range of projects and technologies. The Department was founded in 1989 in recognition of the explosive growth in understanding the molecular biology of development, and in recognition of its potential impact on modern medical practice.

The field of developmental biology is fundamentally integrative. In trying to understand how cells coordinate their activities to form a working organism we employ genetics, genomics, imaging, biochemistry, transgenesis, injection, optical tweezers, clinical studies, and especially that most powerful approach of all: discussion. The Department includes fourteen laboratory groups, most of them in the Beckman Center building.

The Department is home to about 60 graduate students and 80 postdoctoral fellows. These people are the key to the Department's success; they take the research in new directions, debate approaches and ideas, and bring an enormous amount of wisdom and experience to the labs. We also have a superb financial, administrative, and scientific staff that keeps the Department running smoothly. In order to promote learning and transfer of experience and expertise, all facilities and instruments are shared and many of the department rooms contain a mixture of people from different labs. The Department is amply equipped with modern equipment such as confocal and other types of microscopes, microarray facilities, robotics, and computer systems. Within our building are microchemical and sequencing facilities, an imaging center that has numerous microscopes and offers courses in their use, an extensive animal facility, a cell sorter facility run by the people who invented cell sorters, and a new electron microscope facility under construction that is to be run by our department. A major new center for Mass Spectrometry is partly operational and is about to be greatly expanded.

We are within minutes of about fifty other Stanford labs that collectively form the developmental biology community at Stanford. Close contact and friendship among the labs within the department and in other departments are promoted by frequent shared events. Each year we hold a Department retreat, usually at a conference center at Monterey Bay (Asilomar) or in the Sierra Nevada mountains. There are frequent meetings for presentations of research and for journal clubs, such as the Human Genetics journal club, "On the Fly" (Drosophila research), and many others. The Frontiers in Developmental Biology talks, held on Wednesdays every few weeks, bring distinguished scientists to Stanford; the speakers always meet with students and postdoctoral fellows after the talks. Stanford faculty with interests in developmental biology, from about a dozen different departments, meet weekly at lunch to discuss research projects in one of the labs. We teach the major graduate student course in Developmental Biology (DB210), which is open to all graduate students. We teach the entire incoming medical student class a course called Development and Disease Mechanisms (DB206). Other courses include Microbial Development (DB211) and Mammalian Developmental (DB217). Several of our faculty hold appointments in other departments such as Genetics, Pathology, Medicine, or Biochemistry, forming additional links. Some faculty are associated with Programs in Neuroscience, Biophysics, or Cancer Biology.

Collaborations with others around the university are frequent. Many projects have direct medical connections, such as the Seung Kim lab's studies of pancreas development and its relations to diabetes, the Nusse and Scott lab studies of Wnt and Hedgehog signaling with their many connections to cancer, the Fuller lab studies of sperm development and their relation to fertility issues, the Shapiro lab's work on bacterial cell cycle with its potential for discovering new antibiotics, and the Weissman and Crabtree lab studies of immunity and development. Many physicians work in Department labs, and many Department students pursue joint M.D./Ph.D. degrees. Other current collaborations involved physics and engineering. Chemistry professor W.E. Moerner is working with the Shapiro lab on monitoring the behaviors of single bacterial proteins. Biological Sciences professor Steven Block is helping with the use of optical tweezers to detect the behavior of microfilament proteins. Electrical engineering professor Olav Solgaard is working with the Scott lab to develop novel injection technology. Aeronautics and Astronautics professor Claire Tomlin is working with the McAdams lab to model eukaryotic signaling systems from an engineering standpoint. Electrical Engineering professor Gordon Kino is working with the Scott lab on a miniature confocal scanning microscope. Prof. Stuart Kim of our Department has been advising people at NASA Ames research on developmental biology experiments to be done on the Space Station, and he is also working with local software companies to invent new ways to display and analyze microarray data. Many people within the Department are using DNA microarrays, often in collaboration with people in other departments. These are just a few examples of the interdisciplinary work under way in the Department.

The individual lab summaries and publications give an idea of the breadth of the department. A brief list of topics: C. elegans development studied with genomics and transcription microarrays, development and cell cycle of Caulobacter bacteria, germline stem cells in Drosophila, stem cells in pancreas development, chromosome pairing in C. elegans, cell-cell signaling in colonial Myxococcus bacteria, gastrulation genetics and signaling in zebrafish, morphological and behavioral evolution in stickleback fishes, chromatin remodeling complexes, Hedgehog and Wnt signaling, calcium and calcineurin signaling, Hox genes, DNA recombination and repair mutants, cerebellum development and cancer, development and function of vertebrate glial cells, localization of regulatory proteins in bacteria, genomic approaches to Drosophila mesoderm development, zebrafish and stickleback fish genomics, immunity in tunicates, mitochondrial fusion, pattern formation in Drosophila embryos and imaginal discs, MAP kinase signaling, engineering and systems modeling of genetic regulatory circuits, myosin motor structure and function, neural pathfinding, hematopoietic and neural stem cells, neurodegeneration genetics of humans and mice, sex-specific gene expression in C. elegans, cellular immunology including lymphocyte homing, and the molecular mechanisms of immunosuppressant drugs.

The great range of topics is unified because they all relate to the regulators that build and organize living cells. With so much sharing of expertise, it is relatively easy for people in the Department to undertake projects in areas quite new to them. From an educational standpoint, the frequent moves into new areas are valuable training for faculty, postdocs, students, and staff. Learning is constant in this atmosphere. The ongoing successes of students and postdoctoral fellows who have passed through the Department has been a gratifying confirmation of the value of our root principles: sharing facilities, creating frequent communication opportunities, and giving all researchers in the Department the freedom and support they need to explore guided by their own curiosity and inventiveness.