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Abstract

We consider the problem of similarity search and alignment of biological
sequence data using multiple processors operating in parallel. We review the
basic dynamic programming method commonly used in sequential algorithms
and adapt the theory to permit multiple processors to cooperatively solve the
problem. Fast parallel algorithms exist that do not employ the basic dynamic
programming method, but they require hypothetical computational architec-
tures. We outline several practical approaches for parallelizing the basic method
to run on existing architectures. Finally, we present results of our parallel im-
plementations, written in C for the Encore Multimax, a 16-node shared-memory
multiprocessor.

1. Introduction

The nearly exponential growth rate of biological sequence databases threatens to
overwhelm existing computational methods for analysis and searching [4]. Current
algorithms assume a serial computer architecture; multiple processors working in
concert, however, can partition a task and effectively accelerate computation. Mul-
tiprocessing techniques can be readily applied to the pattern recognition tasks of
molecular biology computing.

Two tasks of considerable importance are similarity search and alignment. For a
query string S and a library string X, we define similarity search to be the problem
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of finding the substring of X most similar to S. We define alignment to be the
determination of the sequence of insertions, deletions and transformations sufficient
to convert one string into another.

Both problems can be solved using a well-established dynamic programming
method (the basic method) to compute distances, often called edit or evolutionary
distances, between related strings. The method was independently discovered by
several researchers in a number of fields. Needleman and Wunsch first applied the
method to biological sequences in 1970 [12]. The computational complexity of this
exhaustive approach is O(mn), where m is the length of the query sequence and n is
the size of the library.

Other methods have been developed which do not rely on dynamic programming,
but show similar worst-case complexity. The widely-used Wilbur, Lipman and Pear-
son [8,13] algorithm (FASTP /FASTA) exhibits improved average time complexity by
looking at k-tuples of symbols; the primary control mechanisms are hashing and the
“diagonal” method.

Masek and Paterson present a general algorithm [9] to compute edit distance which
runs in time O(mn/ min(log n,m)), with some restrictions. Dynamic programming is
used, but the technique differs from that of the basic method. It is unclear whether
this algorithm has been applied to biological sequence comparison.

Few researchers have looked at the problem of similarity search and alignment in
a parallel context. Several theoretical results are notable. Landau and Vishkin [7]
show that m?+n processors can find all library subsequences differing from the query
sequence up to a distance of k in time O(logm + k). Mathies [10] has recently devel-
oped a parallel algorithm for determining edit distances which runs in O(log mlogn)
time, requiring mn processors.

These results rely on hypothetical models of computation; in particular, they
assume the existence of a concurrent-read, concurrent-write parallel random access
machine (CRCW PRAM) with p synchronous processors, each with access to a com-
mon memory. The closest thing to a PRAM in today’s arsenal of computing machines
is the shared-memory multiprocessor. At present, however, shared-memory machines
have been designed with at most 512 processors. The most widely available, large-
scale, shared-memory machine is the BBN Butterfly, with up to 508 processors.! Un-
fortunately, with biological sequences, n often exceeds one million, and the products
m? + n and mn render the aforementioned algorithms impractical.

We present here results of efforts to adapt the basic dynamic programming method
for execution on an existing shared-memory architecture. Our intent is to develop
an opportunistic algorithm that uses all available processors to achieve substantial

1The 512-processor IBM RP3 and the Butterfly architectures provide both shared-memory and
message-passing paradigms.
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speedup, without sacrificing the elegance and simplicity of the basic method. First,
we review the method as it exists in sequential algorithms. After describing the fun-
damental issues of parallel design, we present the extensions to the basic method
necessary to support multiple processors. Finally, we present results of several imple-
mentations and discuss the factors which limit the speedup.

2. The Dynamic Programming Method

The classical pattern matching problem asks whether S is a substring of X, given
strings S and X composed of symbols in an alphabet X. In large databases, however,
it is often desirable to retrieve substrings of X that are sufficiently like S, especially if
S is not a substring of X. The approximate pattern matching problem is thus stated:
Given strings S and X, find a substring T in X, such that the distance from S to T
is no more than some value d.

The edit distance, d, is a cost function defined over a set of operations. If a and
b are symbols in ¥, each editing operation a — b has a cost metric §, which exhibits
the following properties:

1. 8(a,b) > 0 for a # b, 6(a,b) =0fora="b
2. 6(a,b) = 6(b,a)
3. 6(a,c) < é(a,b)+ 6(b,c)

For our purposes, the basic edit operations are insertion, deletion and substitution,
although additional specialized operations, like symbol transposition and phonetic
transformations can be defined depending on the alphabet and problem domain.
Clearly, using these edit operations, every string A can be transformed into a string
B in a variety of ways; the total cost of a transformation is simply the sum of the
costs of each edit operation. The edit distance is defined as the minimum total cost
of a sequence of editing operations that transforms A into B.

Alternatively, the problem can be formulated as one of determining the maximum
similarity between two sequences, instead of the minimum distance. Needleman-
Wunsch and subsequent optimizations use this criteria. Following the computer sci-
ence literature, we choose to frame the problem as one of distance minimization. [14]
discusses the equivalence of minimum distance and maximum similarity criteria.

The basic dynamic programming method for finding the edit distance between any
two strings A = ay,ay, ..., a4y, and B = by, by, ..., b, is to compute the (m+1) x (n+ 1)
matrix from the recurrence relations:
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Figure 1: The edit matrix for “abcd” and “acbd”. Each diagonal arc is a substitution
or match, each vertical arc is a deletion and each horizontal arc represents an insertion.

doo = 0
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where e is the empty string (a; — e represents a deletion and e — a; an insertion).
The value at d,,,, is the edit distance between A and B. Clearly, since each d;; requires
constant time to compute, the algorithm runs in O(mn) time.

Furthermore, the sequence of editing operations along the path to the edit distance
can be reconstructed by drawing a directed arc from d;; to dyj if and only if the
minimization step used d;; to derive dy;s. This process is called backtracking. If
each of the editing operations has the same cost § = 1, the edit matrix comparing
the strings “abcd” and “acbd” can be depicted along with its directed dependency
graph, called an edit path, as in Figure 1.

The edit path is interpreted as the alignment of the two sequences, S and X; in
addition, dynamic programming and backtracking techniques can be used to deter-
mine the best substring T of X, such that T' most closely resembles S, and the regions
within X which show the greatest similarity to regions within S.

3. Parallel Design Issues

Amdahl’s Law states that the maximum speedup achievable for an existing sequential
algorithm is 1/S, where
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S = Serial Fraction of the Algorithm
C = Parallelizable Fraction of the Algorithm
S+C=1

— T — Computation Time for 1 processor — S+C
Sp eedup Tp Computation Time for p processors s+&
P

Thus, as p — oo, Speedup — (S 4+ C)/S = 1/S. The limit imposed by Amdahl’s
Law must be tolerated, unless the algorithm can be modified to better exploit a
parallel environment.

In designing a parallel application, close attention must be paid to the underly-
ing architecture. Multiprocessors currently take a number of forms: shared-memory,
message-passing, data-flow and systolic architectures often require entirely different
approaches to the parallelization of an application.? In general, there are three de-
sign considerations that dominate in parallel programming: granularity, communica-
tion/synchronization, and load balance.

Granularity refers to the size of the task, or the amount of computation, each pro-
cessor must handle between extraprocessor communication. Tasks are not necessarily
a constant size; in message-passing architectures, extraprocessor communication is
expensive and task size should be large. In shared-memory and data-parallel ma-
chines, data transmission between processors is cheap and tasks can be of a finer
grain. Synchronization between processors, however, becomes crucial with smaller
tasks; the overhead associated with interprocess communication can often erase any
benefit parallel computation has to offer. As granularity decreases, load balance im-
proves, in that the likelihood of a given processor to be in a waiting state decreases
due to the increased number of tasks. The tradeoffs between granularity, synchro-
nization and load balance emphasize the care with which parallel applications must
be built.

In addition, parallel applications should scale well. Ideally, when p processors
are working on a problem, computation time speedup is p. This is rarely the case,
however, since most problems do not decompose well enough to permit perfect lin-
ear speedup. In addition, the computational overhead incurred by interprocessor
communication and sychronization often reduces the speedup drastically.

4. Parallel Decompositions

The most interesting aspect of the dynamic programming technique is not the actual
calculation of an individual d;;, but rather the flow of control, driven by the availability

2See [?] for a discussion of parallel architectures.
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Figure 2: The arrows indicate computable d;;’s. Notice how the arrows align them-
selves in diagonal patterns.

of data, across the entire matrix. From the above recurrence relation, a given d;; can
only be computed if all d;,, where £ < 7 and y < j, have already been computed.
We say d;; is computable if dij-1, di—1,-1, and d;_; j have already been computed. In
other words, any given row of the matrix is sequentially computable only up to the
:-th index, where 7 is the last computed index of the previous row. This is depicted
schematically in Figure 2.

In many respects, dynamic programming, with its explicit data dependencies and
recursion, is ideal for the data-flow model of parallel computation, in which the ex-
ecution of instructions is triggered solely by the availability of operands. However,
data-flow architectures only exist as prototypes and their viability has yet to be
proven.

We have decomposed the dynamic programming method for implementation on
a shared-memory multiprocessor. Shared-memory architectures share a single global
memory and offer low overhead extraprocessor communication. These machines usu-
ally have powerful processors geared for medium- to coarse-grained tasks. Process
synchronization is key in a shared-memory machine; mutual-exclusion locks must be
used to prevent processors from overwriting the same memory location simultane-
ously.

The Encore Multimax is a 16-node multiprocessor with 32 Mb of shared-memory,
running a parallel version of the Unix operating system. The Multimax is configured
with NS32032 32-bit CPU’s, each rated at .75 MIPS. Two Multimax processors share
a cache, which mediates rapid access to shared-memory.

We consider two parallel decompositions, differing in their perspective on the flow
of computation across the matrix. For the following discussion, we assume the size
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Figure 3: Synchronous: when a processor completes a row, it waits for all other
processors to finish their rows before stepping in unison to the next block of rows.
Asynchronous: upon completion of a row, a processor immediately grabs the next
available row.

of the library (n) is much greater than the size of the query sequence (m) in an
m x n edit matrix. We assume nothing about the number of processors available for
a decomposition.

4.1 The Row Wavefront Approach

In the row wavefront approach, we assign one processor per row to perform ordered
computations across the row. When a processor detects that the required entry in
the previous row has not been computed, the processor blocks (waits). As soon as the
previous row’s entry is computed, the blocked processor reactivates. The resulting
effect is that of leading and lagging processors, with each row one position ahead
of the next row. This approach is a variation of a parallel programming paradigm
known as the producer/consumer model, in which one processor feeds off the results
of another. Here, each processor is a producer as well as a consumer.

We distinguish between synchronous and asynchronous wavefronts (Figure 3). As-
sume p processors are available for the evaluation of the entire matrix. A synchronous
wavefront (sSRWF) advances p rows at a time. When a processor finishes its row, it
waits until all other processors have finished theirs. Then, all processors are assigned
new rows at the same time. An asynchronous row wavefront (aRWF) advances con-
tinuously, by wrapping around the edit matrix. When a processor completes a row, it
grabs the next available row, which is typically p rows ahead. It should be apparent
that asynchronous wavefronts minimize blocking time and are thus preferred.

Assume that each entry in the edit matrix requires computation of uniform size. If
p processors are available and p is less than the length of the query sequence, m, then
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the first p rows can be completely computed in time n+p. With a synchronous wave-
front, each additional block of p rows requires n + p time steps as well. Computation
of the entire matrix requires time [m/p] * (n + p) or [mn/p + m]. With an asyn-
chronous wavefront, the first p rows require n+ p time steps, but each additional block
of p rows requires time n. Computation of the entire matrix using asynchronous row
wavefronts thus requires time [mn/p+p]|. Asynchronous and synchronous wavefronts
require the same amount of time when p = m, namely n + m time steps.

We store the entire edit matrix, requiring O(mn) space, to permit the reconstruc-
tion of edit paths. In practice, this space requirement strains system resources. If
only the edit distance is desired, it is easy to implement the dynamic programming
method in O(m) space. Hirschberg [6] and Myers and Miller [11] give a recursive
divide-and-conquer algorithm for producing an optimal alignment in O(n) space. We
focus instead on the more general backtracking technique that can produce all align-
ments.

Clearly, the RWF approach poses problems when the library is large: Each pro-
cessor requires O(n) space to maximize task granularity. We could divide the edit
matrix into k£ blocks, each of size m x n/k, and evaluate the blocks in order, using all
p processors on each block. Boundary data would be carried over to the next block
and block memory reused. However, such a strategy results in reduced parallelism,
since all processors must synchronize after each block. In addition, the bookkeeping
involved in transferring data between blocks detracts from the simplicity of the ba-
sic method and incurs non-negligible costs in time and space. Several papers offer
strategies for reducing space consumption by constant factors [1,5].

4.2 The Diagonal Wavefront Approach

The diagonal wavefront approach computes d;;’s along positive diagonal axes (some-
times called anti- or counter-diagonals). When a processor is free, it looks along the
current diagonal and computes any of the available cells. Unlike the RWF method, in
which each row must be computed in order, there is no requirement for strict ordering
within the current diagonal, because, if diagonals are chosen from left to right, every
entry of the current diagonal is computable (Figure 4).

Like row wavefronts, diagonal wavefronts can advance both synchronously (sDWF)
and asynchronously (sDWF). In an m x n matrix, there are n + m — 1 diagonals, of
which n — m + 1 are of length m. The remaining 2(m — 1) diagonals consist of two
each of lengths 1,2,...m — 1. If p processors are available, a synchronous DWF can
compute a complete diagonal of length m in time [m/p]; therefore, computation of
the entire matrix takes time 2 Y727 [i/p] + (n — m + 1) [m/p].

Asynchronously, the notion of a current diagonal is less useful; a processor p; will
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Figure 4: Synchronous: Computation of diagonal entries is divided among all proces-
sors. When all processors are finished, the next diagonal is computed. Asynchronous:
A processor is assigned an entire diagonal, much like asynchronous RWF. Each pro-
cessor must check the previous diagonal to determine computability.

windowed Asynchronous Diagonal Wavefront

Figure 5: A sliding window of width w is a space-saving optimization. The width is
the maximum cost of converting the query sequence to another sequence of length m.
The window permits reconstruction of any edit path, without storing the entire edit
matrix.
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step to the next diagonal, because the entries on the current diagonal have already
been distributed to other processors, although their values are not necessarily avail-
able. Processor p; must then check the status of entries in the current diagonal before
it can begin to compute entries in the next diagonal. Thus, every processor must
check entries in the previous diagonal to ensure computability. Assigning a single
processor to each diagonal results in time complexity similar to that of the aRWF
approach. In practice, however, the aDWF approach generates many more tasks than
aRWF (n +m — 1 vs. m); in addition, an aDWF task involves at most m computa-
tions, while an aRWF task is always of size n. We expect aRWF to perform better
in a parallel environment.

However, the DWF methods can be readily modified to improve memory usage. By
examining the cost functions for insertion, deletion and substitution, we can determine
the width of an edit window, which slides laterally along the edit matrix and is always
wide enough to permit backtracking through the edit matrix from row m to row
0 (Figure 5). The width w is simply the maximum cost of converting the query
sequence to any other sequence of length m. For unitary cost functions, w = 2m,
which corresponds to m deletions and m insertions.

For problems in which n is much larger than m, the windowed DWF method can
offer substantial space savings, O(km?) vs. O(mn), at the expense of managing the
sliding window.

4.3 Discussion

The RWF and DWF approaches differ only in their method of assigning tasks to
processors: a row is an RWF task, while a diagonal (or elements of a diagonal in
the synchronous version) is a DWF task. The maximum number of d;;’s that can be
computed simultaneously in both methods is m, the length of the query sequence.
Thus, the upper bound on speedup for both these methods is m. We conclude from
Amdahl’s Law that the inherently serial fraction S of the basic method is 1/m. Thus,
for large m, the basic method is highly parallelizable.

In practice, m must be greater than or equal to the number of processors if the
available parallelism is to be fully exploited. We can localize the source of S at the
start and finish of matrix computation in both approaches. Some processors may
spend a good deal of time waiting for a task during evaluation of the first and last p
diagonals in the DWF method, and the first and last p rows in the RWF approach.
Indeed, in p time steps, p processors perform p(p + 1)/2 computations, which is only
slightly better than half of the p? computations possible.
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5. Implementations and Results

We have implemented the synchronous and asynchronous versions of the RWF and
DWF decompositions, as well as the windowed asynchronous DWF approach. All pro-
grams are written in C, using the parallel programming macro extensions developed
by Argonne National Laboratory for the Encore Multimax.

For testing these decompositions, we generated query and library sequences of
varying lengths. The objective of each implementation is to compute the edit distance,
or dyy,. All cost functions for insertions, deletions and transformations are unity.

Additionally, we tested the windowed version of the asynchronous DWF methods
with real DNA query and library sequences. For this test, the objective is to determine
the optimal alignments given unitary cost functions. We searched for the ten best
alignments of human cytochrome c1 mRNA with sequences in the bovine cytochrome
library of GenBank.

Each implementation was run with 1, 2, 4, 8, 10, and 12 processors. Speedup
results are shown in Figures 6 and 7. Computation time refers to the evaluation
of the entire matrix, excluding sequence loading, memory allocation, and process
creation times.

The data indicate that row wavefronts perform consistently well, yielding sub-
linear, but still substantial, speedups. The windowed aDWF method scales well,
too, although its absolute computation time reflects the cost of managing the sliding
window.

The results of the cytochrome search and alignment are shown in Figure 77?.

6. Summary

We have presented several parallel decompositions of the basic dynamic programming
method for execution on a shared-memory multiprocessor. Shared-memory is partic-
ularly appropriate for this task, because of the highly localized dependencies and the
need for backtracking across substantial portions of the matrix.

The basic method has been implemented on other architectures, including the
1024-element AMT DAP (John Collins, personal communication to D.B.); each pro-
cessor contains 4K of local memory and must make explicit requests for memory be-
longing to neighboring processors. The DAP is a SIMD (single-instruction, multiple-
data stream) machine, which means each processor performs the same, synchronized
operations, but on different data streams.

Carriero and Gelernter [2,3] have parallelized the Needleman-Wunsch algorithm
in a fashion similar to our methods, using the Linda model for parallel programming.
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Figure 6: The computation time speedups for various problem sizes and proces-
sor configurations. sRWF: synchronous row wavefront; sDWF: synchronous diagonal
wavefront; aRWF" asynchronous row wavefront; a DWF: asynchronous diagonal wave-
front.
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Figure 7: Plot of Speedup versus number of processors for all approaches.
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The Linda implementation captures the dataflow aspect of the basic method concep-
tually, but implementations of the Linda constructs typically degrade performance.
Linda is, by design, language- and architecture-independent, and suffers because of
this.

Our results indicate that substantial speedup can be achieved with up to m proces-
sors using relatively simple and practical parallel modifications to the basic method.
By far, the most limiting factor in our implementations is memory; the more we have,
the better off we are, but the problem remains of how to handle the increasing size
of biological sequence libraries. GenBank currently contains 26, 000,000 nucleotides;
a herpes virus query sequence of 177,000 bases results in an edit matrix on the or-
der of 5 x 10° in size. As we partition and fragment the matrix, we slowly lose the
identifiable benefits of parallelism, as we must do extra work to put the pieces back
together.

Although it departs from the simplicity of the basic method, Masek and Paterson’s
optimal sequential algorithm [9] displays great potential for efficient parallelization,
because it partitions the matrix into coarse-grained, independent submatrices and
minimizes the time costs of rebuilding the whole. We are currently continuing our
study of parallel decompositions of sequence comparison algorithms, with a focus
on the current optimal algorithms and on massively-parallel machines which offer
shared-memory paradigms.
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