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Abstract
Using a flexible representation of biological
sequences, we have performed a comparative
analysis of 1208 known tRNA sequences.  We
believe we our technique is a more sensitive
method for detecting structural and functional
relationships in sets of aligned sequences because
we use a flexible representation (for sequences),
as well as a general statistical method that can
detect a wide range of relationships between
positions in a sequence.  Our method utilizes
functional  classifications of the sequence
building-blocks (nucleotide bases and amino
acids) based on physical or chemical properties.
This flexibility in sequence representation
improves the significance of finding sequence
relationships mediated by the defining property.
For example, using a purine/pyrimidine
classification, we can detect base-stacking
interactions in sets of nucleotide sequences that
form base-paired helices.  We use several

statistical measures, including the χ2-test, Monte
Carlo simulation and an information measure, to
detect significant correlations in sequences.  In
this paper we illustrate our method by analyzing
a set of tRNA sequences and showing that the
correlations our program discovers, in each case,
correspond to the known base-pairing and higher
order interactions observed in tRNA crystal
structures.  Furthermore, we show that novel and
interesting features of tRNAs are detected when
sequence correlations with the charged amino
acid (and anticodon) are evaluated.  This
technique is a powerful method for predicting the
structure of RNAs and for analyzing specific
functional characteristics.

Introduction

In the last few years, RNA molecules have reemerged
as much more complex and dynamic molecules than
previously thought.  Functionally, the catalytic
properties of self-splicing introns, RNase P,
splicosomal RNAs and other ribozymes, as well as
the structural properties of ribosomal RNAs, have
captivated molecular biologists who had traditionally
viewed RNAs simplistically.  The discovery of
pseudo-knots, tetra-loops and non-standard base-
pairing have had a similar effect in challenging the
view of RNA structure as being the simple
composition of helical elements (Gutell, Power, Hertz,
Putz, & Stormo, 1992a; Woese & Gutell, 1989; Woese,
Winker, & Gutell, 1990).  The result is a much more
complicated view of RNA structures and their
properties, and a realization that their importance for
biological function has been underestimated.

As is the case with proteins, it has become
imperative to understand the structure of RNAs in
order to understand their function.  The most
successful technique for the prediction of RNA
secondary structure is the analysis of an aligned set of
sequences.  This method of comparative analysis was
first successfully demonstrated for the tRNAs by
Holley et al. (Holley, Apgar, Everett, Madison,
Marquisee, Merrill, et al., 1965).  They observed
regions of sequence that covaried according to a base-
pairing scheme in just a few tRNA sequences, and
from these were able to construct the clover-leaf
model (Fig 1).  The significance of their model (i.e. the
probability of the sequence patterns arising
randomly) was judged to be quite small, and was
further validated by finding similar patterns in
subsequent tRNA sequences.  A few years later Levitt
(Levitt, 1969) used 14 tRNA sequences to generate a
full tertiery model of the tRNA molecule.   Although
his overall model was not completely accurate, he
correctly predicted a 3-way interaction and several
isolated base-pairs between conserved positions in
the structure.  Full confirmation of Holley's clover-
leaf model and Levitt's tertiery interactions came with



the crystal structures of the tRNA molecule (Sussman,
Holbrook, Warrant, Church, & Kim, 1978).
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Figure 1:  tRNA clover leaf diagram

Although originally one was only able to
generate predictions of secondary structure, i.e. the
base-paired, helical regions represented in the clover-
leaf diagram (Fig. 1), with the explosion of sequence
information and the use of more sophisticated
mathematical and statistical methods, elements of
tertiary structure (Fig. 2) can now be automatically
detected.  Recently, the secondary structure of several
ribosomal RNAs, both groups of self-splicing introns
and other molecules have been predicted.  Few
predictive methods have offered reliable and
quantitative information on tertiary interactions,
however.

In a recent paper, Gutell, et al. (1992) are able
to detect most of the tertiary interactions seen in the
tRNA structures using a measure of mutual
information (Gutell, et al., 1992a).  These included the
two 3-way base interactions and several isolated base-
pairs.  In this paper, we confirm the results of their
paper using an alternative algorithm.  We also
demonstrate the power of using multiple
representations of sequences to detect finer structural
details and functional properties.
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Figure 2:  tRNA structure diagram

Materials and Methods
Input for our correlation analysis program,

MCSEQ, is a data set of aligned sequences.  We used
1208 tRNA sequences compiled by Sprinzl et al. and
retrieved electronically from the EMBL database
(Sprinzl, Dank, Nock, & Schön, 1991).  This set was
originally compiled by aligning sequences based on
maximum sequence similarity alone, i.e. positions
were compared independently.  Later sequences have
been aligned using the knowledge of paired regions.
In this sense, one could view parts of our analysis to
be circular since we will report the detection of base-
paired helical regions—knowledge of which was
used to align some of the sequences in the first place.
However, these regions are well understood and
proven, both analytically and experimentally and are
not the main focus of this work.  Detecting the
tertiary interactions, which were not used in any way
in constructing the input, are the main result of this
work.

MCSEQ performs an exhaustive search on all
pairs of positions in the input, evaluating each for
non-independence.  We assume a null hypothesis that
any two positions are uncorrelated, and reject this
hypothesis if a statistical test of independence



exceeds a pre-chosen level of significance.  Our

primary test is the χ2-test, but we also make use of
Monte Carlo simulations and a measure of mutual
information.

For each pair of positions we construct a 4x4
contingency table containing the numbers of each
sequence pair seen in the two positions in the data
set.  For example, if two positions were perfectly (and
uniformly) base-paired, the contingency table would
look like:

A C G T Rows

A 0 0 0 302 302
C 0 0 302 0 302
G 0 302 0 0 302
T 302 0 0 0 302

Cols 302 302 302 302 1208

A χ2-statistic is calculated for each table to test for
non-independence.  For each data set mentioned

below, we used a significance threshold of 1x10-50.
This number was arbitrarily chosen to (1) overcome
the loss of significance due to repeated application of
statistical tests, and (2) to restrict the number of
significant correlations to a manageable number.  The
tRNA sequences in our input are 96 bases long.  20 of
these positions are inserts present in fewer than 10% of
the data set.  Thus, for the 76 core positions, we
perfomed 76 x 75 / 2 = 2850 tests in looking for
relationships between the positions of the tRNAs.

We also report several other measures of the
strength of each significant correlation.  The first two

are transformations of the χ2-statitistic:  Cramer's V
and the contingency coefficient C . We also report a
symmetric uncertainty coefficient Uxy which is

closely related to the parameter R(x,y) of Gutell et al.
(Gutell, et al., 1992a).  Each of these measures lie
between zero and one, with values closer to one
signifying strong correlations, and zero
corresponding to the absence of a correlation.  All of
the statistical results are generated using algorithms
based on those described in (Press, Flannery,
Teukolsky, & Vetterling, 1988).

Unreported here is the Monte Carlo
simulations we perform for each significant
correlation in order to validate its significance.  For
the simulation we construct a large number (typically
1000) of simulated contingency tables from the base
distributions of the two positions being analyzed, and
using the independence assumption.  Thus, we
maintain base compositions at each position but
randomize any covariation that might be present.

Each simulated data set is tested as described above
to determine the rate of detecting a correlation at the
reported significance by random chance.  For all
correlations described in this paper, none of the 1000
simulated tables reached the significance of the actual
sequence data, which confirms the significance at

least the p=10-3 level.  Tables II through VI contain
the results of running MCSEQ on the tRNA
sequences looking for covariation in nucleotide
sequences.  Note that the analysis was run on the gene
sequences for each tRNA, so the bases used consist of
A, C, G and T (i.e. not U and the modified
nucleotides).

MCSEQ only detects the presence of generic
covariations in the data sets it is given.  There is no
inherent ability to detect specific types of interactions,
such as base-pairing, from these correlations.
However, one can infer the type of interaction by
recognizing characteristic patterns in the contingency
tables.  MCSEQ displays the contingency tables for
each significant correlation, with the log-likelihood in
parentheses to give an indication of how far from
independence each bin in the table is.  In this paper
we are evaluating the validity of our results in the
context of the known tRNA structure.  But we would
like to suggest that the reverse is possible—inferring
structure from the patterns of significant correlations.
  Two variations of the basic analysis described above
were also tested.  In the first, a correlation search was
performed on the same data set, but considered only
purines and pyrimidines.  An important feature of
MCSEQ is the ability to define classifications of
sequence characters.  This has the effect of focusing
the correlation search on specific types of sequence
differences (strong/weak or amino/keto can also be
used), often detecting otherwise unnoticed
interactions.  In a previous paper we describe and
demonstrate the power of this idea for protein
sequences (Klingler & Brutlag, 1993).  Table VII
contains the results of this analysis.

Second, we performed two searches with
MCSEQ looking for covariation between the tRNA
sequence and the cognate amino acid.  For each of
these searches, 76 tests were performed—one for each
position.  The cognate amino acids were classified in
two different ways based on the genetic code:  (1)
using second position groups, and (2) using first
position groups.  These two analyses also
demonstrate the generality and power of MCSEQ in
its ability to search for a wide range of correleations.
The results of these two analyses from MCSEQ are
reported in Tables VIII and IX, respectively.



Results
An example of the results from MCSEQ on base
correlations in the tRNAs appear in Tables I, where 6
of the base-pairing correlations of the acceptor stem
are listed.  Similar tables were generated for the D

stem, the anticodon stem, and the TψC stem.  These
correlations are the strongest observed for this data
set, most having significances below the resolution of

computer (< 10-250).

Pos. 1 vs. 72     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        1(-2.9)    3(-3.6)    3(-1.5)  182( 1.3)      189
Cytosine       2(-1.4)    2(-3.2)   77( 2.6)    2(-2.3)       83
Guanine        2(-3.6)  674( 0.4)    2(-3.3)  103(-0.6)      781
Thymine      106( 2.3)    1(-4.2)    2(-1.4)    5(-1.7)      114
Col Sum      111        680         84        292           1167
p= 0.0000e+00, χ2= 2617.69, df= 9, V= 0.86, C= 0.83, Uxy= 0.69

Pos. 2 vs. 71      Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        1(-3.1)    1(-4.1)    1(-4.1)  176( 1.6)      179
Cytosine       5(-2.3)    2(-4.2)  386( 1.1)    4(-3.0)      397
Guanine        2(-3.3)  396( 1.0)    2(-4.3)   40(-0.8)      440
Thymine      137( 2.0)    1(-4.0)    7(-2.0)    7(-1.4)      152
Col Sum      145        400        396        227           1168
p= 0.0000e+00, χ2= 2886.97, df= 9, V= 0.91, C= 0.84, Uxy= 0.81

Pos. 3 vs. 70     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        5(-2.0)    3(-3.1)    1(-4.0)  201( 1.4)      210
Cytosine       4(-2.6)    2(-3.9)  295( 1.3)    2(-3.6)      303
Guanine        1(-4.3)  366( 1.0)    3(-3.7)   68(-0.4)      438
Thymine      194( 1.6)    2(-3.5)   15(-1.4)    6(-2.1)      217
Col Sum      204        373        314        277           116
p= 0.0000e+00, χ2= 2712.72, df= 9, V= 0.88, C= 0.84, Uxy= 0.76

Pos. 4 vs. 69     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        6(-2.1)   10(-2.0)    1(-4.2)  224( 1.3)      241
Cytosine       4(-2.6)    6(-2.5)  246( 1.3)    3(-3.0)      259
Guanine        2(-3.6)  327( 1.1)    2(-3.9)   52(-0.6)      383
Thymine      220( 1.4)    2(-3.7)   59(-0.2)    4(-2.8)      285
Col Sum      232        345        308        283           1168
p= 0.0000e+00, χ2= 2456.44, df= 9, V= 0.84, C= 0.82, Uxy= 0.69

Pos. 5 vs. 68     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        5(-2.6)    7(-2.2)    1(-4.6)  336( 1.0)      349
Cytosine       7(-2.1)    5(-2.4)  269( 1.2)    3(-3.5)      284
Guanine        3(-2.8)  204( 1.4)    4(-2.9)   55(-0.5)      266
Thymine      209( 1.4)    2(-3.2)   49(-0.4)    8(-2.4)      268
Col Sum      224        218        323        402           1167
p= 0.0000e+00, χ2= 2448.44, df= 9, V= 0.84, C= 0.82, Uxy= 0.69

Pos. 6 vs. 67     Adenine         Cytosine          Guanine          Thymine         Row Sum
Adenine        2(-3.6)    1(-3.8)    4(-2.7)  232( 1.3)      239
Cytosine       6(-2.4)    1(-3.8)  212( 1.4)    4(-2.7)      223
Guanine        3(-3.3)  222( 1.5)    1(-4.1)   34(-0.7)      260
Thymine      346( 0.9)    3(-3.4)   66(-0.5)   30(-1.3)      445
Col Sum      357        227        283        300           1167
p= 0.0000e+00, χ2= 2460.99, df= 9, V= 0.84, C= 0.82, Uxy= 0.68

TABLE I:  Acceptor stem correlations
Table II contains the correlations defining the

two 3-way base interactions.  These two 3-way
interaction are detected as significant pairwise
corelations in all three pairings of the three positions.



Furthermore, both of the triplet arrangements (T=A–
A and C=G–G) are observed in both sets of

contingency tables:  the  former is in italics and the
latter is in bold.

A. Pos. 13 vs. 22     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine      100( 0.4)    5( 0.2)   15(-1.6)   43( 0.9)      163
Cytosine      12(-2.6)    4(-0.9)  372( 0.7)    4(-2.4)      392
Guanine      152( 0.7)   10( 0.8)    7(-2.5)   19(-0.1)      188
Thymine      202( 0.2)    9(-0.1)  130(-0.3)   62( 0.3)      403
Col Sum      466         28        524        128           1146
p= 9.3318e-138, χ2= 666.83, df= 9, V= 0.44, C= 0.61, Uxy= 0.29

Pos. 13 vs. 46     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine       43(-0.2)   25( 1.0)   24(-1.2)   73( 1.0)      165
Cytosine      35(-1.2)    4(-1.7)  345( 0.6)    8(-2.1)      392
Guanine       52(-0.1)   29( 1.0)   44(-0.7)   63( 0.7)      188
Thymine      218( 0.6)    8(-1.1)  130(-0.4)   44(-0.4)      400
Col Sum      348         66        543        188           1145
p= 1.0616e-123, χ2= 601.37, df= 9, V= 0.42, C= 0.59, Uxy= 0.21

Pos. 22 vs. 46     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine      229( 0.5)   53( 0.7)   48(-1.5)  135( 0.6)      465
Cytosine       8(-0.1)    3( 0.6)   13( 0.0)    4(-0.1)       28
Guanine       66(-0.9)    6(-1.6)  435( 0.6)   17(-1.6)      524
Thymine       45( 0.2)    3(-0.9)   48(-0.2)   31( 0.4)      127
Col Sum      348         65        544        187           1144
p= 5.6880e-111, χ2= 542.03, df= 9, V= 0.40, C= 0.57, Uxy= 0.24

B. Pos. 9 vs. 12     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine       96( 0.0)   60(-0.9)   49(-0.7)  525( 0.3)      730
Cytosine       5( 0.0)   30( 1.3)    4(-0.4)    2(-2.4)       41
Guanine       36(-0.2)  119( 0.6)  105( 0.8)   77(-0.9)      337
Thymine        7( 0.4)   14( 0.6)    4(-0.3)   13(-0.5)       38
Col Sum      144        223        162        617           1146
p= 4.2388e-77, χ2= 383.63, df= 9, V= 0.33, C= 0.50, Uxy= 0.16

Pos. 9 vs. 23     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine      522( 0.3)   45(-0.8)   63(-0.9)  101( 0.2)      731
Cytosine       2(-2.4)    4(-0.3)   30( 1.3)    4(-0.2)       40
Guanine       73(-0.9)  108( 0.8)  125( 0.6)   30(-0.3)      336
Thymine       15(-0.3)    2(-0.9)   19( 0.9)    1(-1.5)       37
Col Sum      612        159        237        136           1144
p= 2.8760e-84, χ2= 417.23, df= 9, V= 0.35, C= 0.52, Uxy= 0.17

Pos. 12 vs. 23     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine        8(-2.2)    6(-1.2)    3(-2.3)  125( 2.0)      142
Cytosine      10(-2.5)    1(-3.4)  214( 1.5)    1(-3.3)      226
Guanine        5(-2.9)  150( 1.9)    3(-2.4)    4(-1.6)      162
Thymine      590( 0.6)    2(-3.8)   20(-1.9)    6(-2.5)      618
Col Sum      613        159        240        136           1148
p= 0.0000e+00, χ2= 2816.67, df= 9, V= 0.90, C= 0.84, Uxy= 0.77

TABLE II:  Tertiary pairing correlations for 13,22,46 (A) and 9,12,23 (B)

Table III lists the correlations detected
thatcorrespond to isolated base-pairs in the tRNA
structures.  Only one of the representative

contingency tables is shown.  The base-pairing
pattern is not as easily recognizable for these
correlations, although it is clearly a reflection of a



base-pairing interaction subject to the low sequence
variability of the composite positions.  The negative
log-likelihoods both above and below, and to the left

and right of the dominant bin indicate that indicate
that the base-pair is conserved beyond the base
composition.

Pos  8 vs. 14 Pos 18 vs. 55 Pos 54 vs. 58
Pos 15 vs. 48 Pos 19 vs. 56

Pos. 15 vs. 48     Adenine         Cytosine          Guanine          Thymine         Row Sum   
Adenine       27( 0.2)   34(-1.9)    8(-0.1)  313( 0.9)      382
Cytosine       1(-0.2)    6(-0.7)    5( 2.3)    9( 0.2)       21
Guanine       11(-1.2)  583( 0.5)    8(-0.6)   16(-2.6)      618
Thymine       24( 1.7)   12(-1.3)    4( 0.9)   33( 0.3)       73
Col Sum       63        635         25        371           1094
p= 1.6494e-193, χ2= 925.87, df= 9, V= 0.53, C= 0.68, Uxy= 0.48

TABLE III:  Isolated base pair correlations

Table IV lists all of the neighboring
correlations found when the purine/pyrimidine
classification of bases was used in MCSEQ.  Only one
of the actual contingency tables is shown.  Many
more correlations were found to be significant in this
representation.  However, they are not reported here
if they if they are redundant (i.e. appear as base
correlations in any of the previously mentioned
tables).  For example, all base-pairing stem

interactions were detected in this analysis as
expected.  Filtering out these correlations left a set
consisting of mostly neighboring pairs, all but one
with the same pattern—similar bases tend to stack
next to each other.  The one exception (positions 36
and 37) is not part of a helical stem where base-
stacking has a greater affect in avoiding purine
clashing.

Pos  2 vs.  3 Pos 18 vs. 19 Pos 68 vs. 69
Pos  3 vs.  4 Pos 36 vs. 37 Pos 69 vs. 70
Pos  4 vs.  5 Pos 60 vs. 61 Pos 70 vs. 71

Pos 68 vs. 69     Purine        Pyrimidine         Row Sum   
Purine       370( 0.4)  184(-0.5)      554
Pyrimidine   165(-0.6)  493( 0.3)      658
Col Sum      535        677           1212
p= 4.4911e-48, χ2= 212.23, df= 1, V= 0.42, C= 0.39, Uxy= 0.13

TABLE  IV:  Base-stacking correlations

Tables V contains correlations between
positions in the tRNA sequences and the type of amino
acid charged to those sequences.  In the two analyses
comprising this table we were looking for positions in
the tRNA that vary with the amino acid it carries.  We
expected to see the anticodon positions show up as well
as the discriminator base (Rould, Perona, Söll, & Steitz,
1989).  But we wanted to test other positions for
functional significance with MCSEQ.  For example,
bases that confer some aspect of specficity in
synthetase- or ribosome-binding would be detected
with these analyses.  In the table the amino acids are
classified into four groups according to the prevalent
amino acids encoded for by individual bases of the

anticodon.  Table V contains correlations with the
amino acids grouped according to the base in the
middle position of the anticodon (FLIMV, SPTA,
YHQNKDE and CWRG), and correlations with the
amino acids grouped according to the base in the first
position of the anticodon (FSYCW, LPHQR, IMTNK
and VADEG).  As expected the strongest correlations
found were the respective anticodon positions.  The
next strongest correlation involves position 73, which
has been termed the discriminator base and is
postulated to interact with the tRNA synthetase,
affecting its specificity (Crothers, Seno, & Söll, 1972).
The remaining significant correlations, listed in Table V,
are non-overlapping and all occur in positions that



could interact with the tRNA synthetase based on
proximity in the co-crystal structure (Rould, et al.,

1989).

Position 12       Adenine         Cytosine          Guanine          Thymine         Row Sum   
VADEG         37( 0.0)   79( 0.4)   29(-0.3)  139(-0.1)      284
LPHQR         52( 0.3)   82( 0.3)   91( 0.7)   93(-0.6)      318
FSYCW         10(-1.1)   18(-1.0)    8(-1.4)  207( 0.5)      243
IMTNK         42( 0.2)   43(-0.3)   30(-0.3)  175( 0.1)      290
Col Sum      141        222        158        614           1135
p= 3.5936e-41, χ2= 214.13, df= 9, V= 0.25, C= 0.40, Uxy= 0.08

Position 13       Adenine         Cytosine          Guanine          Thymine         Row Sum   
VADEG         43( 0.1)   65(-0.4)   98( 0.8)   77(-0.3)      283
LPHQR         69( 0.4)   61(-0.6)   56( 0.1)  132( 0.2)      318
FSYCW         18(-0.7)  157( 0.6)   17(-0.8)   51(-0.5)      243
IMTNK         32(-0.3)  105( 0.0)   13(-1.3)  140( 0.3)      290
Col Sum      162        388        184        400           1134
p= 1.7915e-49, χ2= 253.53, df= 9, V= 0.27, C= 0.43, Uxy= 0.08

Position 31       Adenine         Cytosine          Guanine          Thymine         Row Sum   
VADEG        187( 0.5)   27(-1.1)   27(-0.6)   59( 0.0)      300
LPHQR        143( 0.2)   61(-0.3)   61( 0.1)   54(-0.1)      319
FSYCW         67(-0.3)   50(-0.2)   71( 0.6)   55( 0.2)      243
IMTNK         44(-0.9)  163( 0.8)   32(-0.4)   51(-0.1)      290
Col Sum      441        301        191        219           1152
p= 1.1477e-55, χ2= 282.81, df= 9, V= 0.29, C= 0.44, Uxy= 0.09

Position 38       Adenine         Cytosine          Guanine          Thymine         Row Sum   
VADEG        275( 0.3)   18(-1.0)    2(-1.3)    5(-2.0)      300
LPHQR        175(-0.2)   49(-0.1)    9( 0.1)   86( 0.7)      319
FSYCW        210( 0.2)   21(-0.7)   11( 0.6)    1(-3.4)      243
IMTNK        120(-0.5)  109( 0.8)    6(-0.2)   55( 0.4)      290
Col Sum      780        197         28        147           1152
p= 2.6287e-60, χ2= 304.70, df= 9, V= 0.30, C= 0.46, Uxy= 0.12

Position 39       Adenine         Cytosine          Guanine          Thymine         Row Sum   
VADEG         56( 0.3)   36(-0.3)   30(-1.1)  178( 0.4)      300
LPHQR         38(-0.1)   62( 0.1)   65(-0.4)  154( 0.2)      319
FSYCW         27(-0.2)   69( 0.5)   71( 0.0)   75(-0.2)      242
IMTNK         33(-0.2)   29(-0.5)  186( 0.7)   42(-1.0)      290
Col Sum      154        196        352        449           1151
p= 8.9163e-57, χ2= 288.05, df= 9, V= 0.29, C= 0.45, Uxy= 0.09

Position 70       Adenine         Cytosine          Guanine          Thymine         Row Sum   
CWRG          93( 0.6)   77(-0.2)   85( 0.1)   42(-0.5)      297
SPTA          20(-1.0)   70(-0.3)   69(-0.2)  141( 0.7)      300
FLIMV         59( 0.0)  119( 0.1)  116( 0.2)   52(-0.5)      346
YHQNKDE       28(-0.3)  103( 0.4)   40(-0.3)   38(-0.3)      209
Col Sum      200        369        310        273           1152
p= 1.7948e-36, χ2= 191.72, df= 9, V= 0.24, C= 0.38, Uxy= 0.06

Position 72       Adenine         Cytosine          Guanine          Thymine         Row Sum   
CWRG           6(-1.5)  179( 0.0)   14(-0.4)   98( 0.3)      297
SPTA           4(-1.9)  221( 0.2)   37( 0.6)   38(-0.7)      300
FLIMV         89( 1.0)  170(-0.2)   27( 0.1)   60(-0.4)      346
YHQNKDE        8(-0.9)  106(-0.1)    2(-2.0)   93( 0.6)      209
Col Sum      107        676         80        289           1152
p= 7.7943e-50, χ2= 255.24, df= 9, V= 0.27, C= 0.43, Uxy= 0.09



TABLE V:  Correlations with codon positions
Discussion

We have developed a method that has successfully
detected most of the known structural interactions
present in the tRNA structure.  Using standard
statistical tests we have detected significant
correlations in an aligned set of 1208 tRNA sequence
that correspond to base-pairing in helical regions, 3-
way base interactions and isolated base-pairs.
Additionally, we have detected base-stacking
interactions using an alternate encoding of the tRNA
sequences.  Our method, which is primarily based on

the χ2-test with validation from information theory
and Monte Carlo simulations, finds these structural
correlations with high specificity.

The correlations detected for the base-paired
helices in the tRNA molecule are unmistakable.
There is a strong diagonal representing standard
Watson-Crick base-pairing in all tables, and a minor
contribution of acceptable G-U paring in some tables.
These correlations patterns, the sequence in which
they were detected and the base-stacking interactions
are more than enough evidence to predict helical
stems in sequences of unknown structure.

We also postulate that 3-way base
interactions can be detected with this type of analysis.
In our data, the two 3-way interactions were the only
triples for which all component pairs were detected
as significant correlations.  Additionally, the patterns
in the contingency tables suggest G=C–C and T=A–A
interactions.  To a lesser degree, we believe that
isolated base-pairs can also be predicted.  The data
presented in Table III represent significant
correlations detected beyond the strong sequence
conservation.  Although, the base-pairing pattern
seen in the helical stems is not as obvious, one or two
accepted base-pairings are preferred.  As a control,
we did not detect significant correlations between
pairs of highly conserved positions that did not
interact.

The ability to use arbitrary encodings of
sequence information to detect sequence covariation
is a powerful method for detecting otherwise latent
structural or functional relationships.  We have also
developed a method for automatically translating the
sequence variation and covariation information that
is reported by MCSEQ into data structures that can be
used for sequence classification and database search.
Both of these properties are described elsewhere in
the context of protein sequence analysis (Klingler &
Brutlag, 1993).

Finally, we have used MCSEQ to look at
correlations between two different properties of
tRNAs:  their nucleotide sequence and their cognate
amino acids.  The flexibility in encoding categorical
parameter of any type in our system allows one to
investigate a wider range of questions.  We have
discovered a set of correlations in the tRNA molecule
that have a striking spatial arrangement—all lie on
the face of the molecule that interacts with the tRNA
synthetase, suggesting a role in conferring specificity
of interaction (Rould, et al., 1989).  In fact, most of the
positions we detect, including 34-37, 70-73 and
positions in the D-stem play a role in recognition the
tRNA synthetase.  One
also expected interaction with the ribosome to
produce correlations, but these cannot be confirmed
at the present time.

We are currently analyzing other RNA
sequence sets.  Compilations of 5S rRNA sequences
(Specht, Wolters, & Erdmann, 1991), 23S rRNA
sequences (Gutell, Schnare, & Gray, 1992b), small
ribosomal subunit RNA sequences (De Rijk, Neefs, de
Peer, & De Wachter, 1992), and other small RNA
sequences (Shumyatsky & Reddy, 1992) are easily
obtained for analysis.  Some of these sequence sets
can be used as further validation of our method,
while others have less well understood tertiary
structures.  We believe that comparative methods like
ours can yield valuable information for the
elucidation of RNA tertiary structures.  However, a
careful understanding of tertiary interactions in RNA
and how those interactions will be reflected in
contingency tables is essential.  The contingency
tables for base-paired helical stems have easily
interpreted patterns which are reinforced by the base-
stacking correlations.  The coordinated patterns for
T=A–A and C=G–G base triplets are less obvious, but
can be recognized from strong pairwise correlations.
The contingency tables for isolated base-pairs are the
least interpretable because they can be highly
dependent on the level of sequence variation in the
contributing positions.

We are also exploring the possibility of
translating definable sequence interactions into
distance constraints that could be used in a distance
geometry program to predict three-dimensional
structures (Altman, 1993).
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