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life sciences

iology is evolving
into an information-
rich science due to
advances in high-
throughput (large

scale) experimental techniques that
produce hundreds of thousands of
data points in a single measurement.
The field of computational function-
al genomics exploits this wealth of
information to create models that
begin to describe function in a sys-
tematic way. A fundamental aspect
of computational functional
genomics is the problem of func-
tional identification. All genes in an
organism have a specific function or
functions. This function describes
the role that a gene plays in the cell
and is generally determined experi-
mentally. The high-throughput
experimental techniques mentioned
above do not measure function
directly, but rather measure features
of a gene that are related to its func-
tion (e.g., the sequence of the
gene). The relationships between
the function of a gene and its fea-
tures are often complex and not well
understood, making machine learn-
ing algorithms ideally suited for the
analysis of this type of biological
data. Given a training set of genes
with known features and function,
a model can be constructed using
machine learning to predict the
function of all the genes in the
organism. Furthermore, the fea-
tures of an organism can be ana-
lyzed in an unsupervised framework
to identify genes that have com-
mon features and thus possible

common or related functions. In
this article we present some specific
examples of how representing bio-
logical data in a machine-learning
framework is possible and how
these representations contribute to
both the prediction and discovery
of biological function. 

Introduction
High-throughput experimental
methodology has transformed
biology into an information-rich
science. It is now possible to rapidly
obtain data on thousands of genes
in a single experiment. In the next
decades, data from these experi-
ments may provide an integral
understanding of biological systems.
The depth of understanding of a
biological system reflects the accu-
racy with which it can be simulated
and engineered. It is therefore criti-
cal that the understanding of bio-
logical systems be pushed to the
deepest level possible. However
high-throughput (large-scale) bio-
logical data sets are complex,
incomplete, and noisy, and thus
development of sophisticated com-
putational methods is necessary. 

The first step towards a system-
wide understanding of a biological
system is functional identification
of its components. Currently,
approximately one quarter of the
yeast genome (http://www.yeast-
genome.org/) and greater fractions
for other organisms have no known
function. Recent breakthroughs in
large-scale experimental methods
have resulted in the ability to mea-

sure specific characteristics of a bio-
logical system (e.g., the sequence of
a gene or its level of expression) in a
high-throughput manner, opening
the possibility of automated func-
tional identification. Automated
functional identification is based on
the principle of functional similarity,
such that two genes that share com-
mon characteristics will generally
share common function. For exam-
ple, two genes with similar DNA
sequences from different organisms
will most likely have the same func-
tion in their respective organism.

The problem of functional identi-
fication of all the genes in a biologi-
cal system, or functional genomics,
is thus one of pattern recognition.
Each gene can be characterized by a
set of features (e.g., the gene
sequence) that can be obtained in a
high-throughput manner. Previous
experimental work has identified the
function of some of these genes.
The features of these characterized
genes can be used as a training set in
a supervised framework for detect-
ing relationships between the fea-
tures and their respective functions.
These patterns can in turn be used
to assign (or annotate) putative
function to all genes that have been
characterized by high-throughput
experiments. Moreover, identifica-
tion of common features in an unsu-
pervised framework may suggest
new functional relationships and
provide the experimentalists with
direction for rational experimental
design. In both the supervised and
unsupervised frameworks, success is
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contingent upon several criteria.
First and foremost, proper feature
selection is critical because not all
features may be informative. The
identification of the appropriate fea-
tures requires a strong understand-
ing of the underlying biological
process. However, the biological
process is often poorly understood,
making automatic feature selection
an important and challenging com-
ponent of computational functional
genomics. Second, proper training
set construction and validation is
important because biological data
sets are inherently biased. Bias is
introduced in the data sets because
the biologist’s decision to study a
particular system is influenced by
the experimental complexity of the
system. For example, organismal
development has been extensively
focused on the fruitfly because it
develops in only a few days. These
types of bias must be taken into
account to construct general mod-
els. Ultimately, the success of any
method is measured by its biologi-
cal accuracy and significance. A suc-
cessful method produces results
that are not only predictive but also
lead to a more comprehensive
understanding of the underlying
biological mechanism.

Functional identification is con-
text specific, such that the function
associated with a gene is dependent
on the scale at which it is being
studied. For example, a gene in the
molecular context encodes a protein
that has the potential to catalyze a
chemical reaction in the cell (e.g., a
kinase catalyzes a phosphorylation
reaction [Figure 1(a)]). In a cellular
context, the phosphorylation reac-
tion can activate a signal transduc-
tion cascade [Figure 1(b)]. In the
physiological context, the activation
of this cascade ultimately leads to
cell division [Figure 1(c)]. Although
the biological function assigned to
the gene is dependent on scale,
machine-learning frameworks can

nonetheless be used to model and
identify function at every scale. The
examples of functional genomics
research presented below are orga-
nized based on the concept of bio-
logical scale. The purpose of this
article is to review some of the
recent work that has been done in
computational functional genomics,
specifically illustrating how better
representations of the data, careful
selection of a training set, and better
machine learning algorithms can
significantly improve functional
identification. We present the prob-
lem of functional identification in
the context of each biological scale.
Then we conclude with specific
challenges in computational func-
tional genomics where the signal
processing community may be able

to make significant contributions.
This review does not attempt to be
comprehensive, and examples have
been chosen from our own work
and the work of others simply to
illustrate the challenges and the
types of approaches taken.

Functional Identification
Biological systems are comprised of
a multitude of proteins that work in
concert to afford the system
remarkable efficiency and adaptabil-
ity. These proteins generally facili-
tate (or catalyze) specific chemical
reactions that allow the system to
operate. Genes encode protein
sequences, and when one refers to
the function of a gene, it is in fact
the function of the corresponding
protein that is implied. Genes are

▲ 1. The central dogma of molecular biology describes the flow of genetic information as
going from the gene (DNA) to RNA (an intermediary molecule) and then to protein. The
function of a gene is defined by the function of the protein encoded by the gene. Protein
function can be studied in various contexts, illustrated here by an example of the p38
mitogen-activated kinase (MAPK) protein. (a) At the molecular level, MAPK transfers a
phosphate group onto another protein to activate it. (b) At the cellular level, MAPK plays a
critical role in the MAPK signaling pathway. (c) At the physiological level, activation of the
MAPK signaling pathway can serve as a signal leading to cell division. 
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comprised of DNA. Cells have
developed extremely efficient and
accurate molecular mechanisms for
replicating DNA. Current high-
throughput experimental techniques
exploit these mechanisms to rapidly
and efficiently measure specific fea-
tures of genes. Thus, genes are
experimentally much easier to char-
acterize than proteins. Genes are
also fundamental elements of living
systems and thus remain the center
of interest for the majority of bio-
logical labs. For these reasons, most
high throughput biological data is
genetic (e.g., gene sequences, gene
expression levels).

To treat data in a machine-learn-
ing framework, it is imperative to
properly represent it. The scale of
biological data is broad, ranging
from detailed molecular structures
to organism wide phenotypes. In
this section we review recent
advances in the development of
novel representations for this data
and demonstrate how these repre-
sentations simplify the application of
various machine-learning protocols.
The following sections are organized
according to biological scale, rang-
ing from molecular to physiological
scale. Although the systems change,
the fundamental theme of machine
learning applied to biological sys-
tems remains, and for each example,
the different aspects (e.g., features,
training set) of the system are clear.

Molecular Function
Molecular function is the biochemi-
cal or biophysical activity of a gene.
These activities include catalysis of
chemical reactions, binding to small
molecules or atoms, and interaction
with other biological macro-
molecules. Understanding what
molecular function a gene can per-
form as well as where the activity
occurs can provide powerful insights
on how the gene works, how the
gene may be modified to change its
function, and even how to inhibit or

activate the function for medical
treatment. Two types of data are
used for computational studies of
molecular function: the primary
sequence of the gene and the three
dimensional (3-D) structure of the
protein encoded by that gene. A key
challenge in analyzing molecular
function is identifying important
functional sites in the protein given
its sequence or structure.

Using Protein Sequence Data for
Identifying Molecular Function
Protein sequence data is represented
as a string with an alphabet size of
20, one for each amino acid type.
The universal genetic code relates
gene and protein sequences such that
if a gene is sequenced, the protein
sequence can be easily known. The
genome sequencing projects have
thus been a major source of protein
sequence data. Protein sequence
databases like SwissProt [1], UniProt
[2], and the Protein Information
Resource [3] provide rich reposito-
ries for protein sequence data and
functional annotation.

A common supervised approach
for using protein sequence data to
identify molecular function for an
unknown protein is to identify
known proteins with similar
sequence. The process of comparing
sequences is called sequence align-
ment. Sequence alignment places
protein sequences such that the
optimal number of letters (amino
acids) in the sequences is matched
(often with gaps and substitutions
allowed). Smith-Waterman [4] has
addressed optimal local alignment
of pairs of sequences using dynamic
programming. This optimal align-
ment method is not always suitable
for analysis on large databases of
sequences because of their runtime
complexity. Heuristic methods like
BLAST [5] have been developed to
rapidly identify sequences in large
databases that are similar to a query
sequence. It is important to note

that reliable assignment of function
requires the query sequence to have
sufficiently high sequence similarity
to a previously functionally charac-
terized sequence.

Sequence-based methods often
focus on specific areas of the protein
sequence that are relevant to the
protein’s function. Mutation or
deletion of amino acids in one of
these functional areas will negatively
affect protein function. As a result,
if a set of protein sequences from
different organisms are aligned,
regions that are well matched (or
conserved) among the sequences
may correspond to functionally
important amino acids. Aligning a
set of sequences is known as multi-
ple sequence alignment (MSA).
Multiple sequence alignment is a
challenging problem and an active
area of research. A common compu-
tational tool for multiple sequence
alignment is ClustalW [7].
Identifying and representing pat-
terns in these alignments is impor-
tant for predicting functional sites
on protein sequences because func-
tional sites often correspond to
highly conserved amino acids in the
multiple sequence alignment. This
pattern of conservation, or profile, is
characteristic of the protein’s func-
tion and can therefore be used to
identify function in unknown pro-
teins. Furthermore, the conserved
amino acids generally play critical
roles in the protein’s function (e.g.,
negatively charged amino acids like
glutamate and aspartate often play
the role of a base in acid-base cataly-
sis), and identification of these
residues can significantly enhance
the understanding of the catalytic
mechanism of the protein.

An important challenge with
multiple sequence alignments is effi-
cient representation of the pattern
of conserved amino acids in the
alignment for rapid searching of
such patterns in sequence databases.
PROSITE [8] uses the simplest pos-
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sible representation of a pattern, a
regular expression. Pfam [9], on the
other hand, uses a more sophisticat-
ed representation, a hidden markov
model. Recently, Nevill-Manning et
al. have developed a method,
eMotif [10], that produces a range
of sequence patterns that result in
varying degrees of specificity and
sensitivity. The highly specific
motifs are very useful in assigning
function rapidly with few false pre-
dictions, while the more sensitive
motifs are used to infer weaker rela-
tionships that can then be experi-
mentally verified. Finally, Wu et al.
developed a more sensitive repre-
sentation of conserved regions with
position specific weight matrices, or
profiles, in a method called eMatrix
[11]. Profiles specify the probability
of occurrence for the amino acids at
each position in the conserved
region. In many instances the speci-
ficity and accuracy of profile-based
methods for functional identifica-
tion is sufficient to correctly anno-
tate the majority of genes in a
biological system. This is particular-
ly important because the rate of
gene sequencing is increasing expo-
nentially, and annotation of these
novel sequences must be carried out
in an automated manner.

There are specific biological
examples where only a small number
of conserved amino acids are neces-
sary for a protein to maintain its
function. In these cases, it is very dif-
ficult to use sequence similarity to
identify function. In fact, recent
sequencing projects have revealed
that more than half of new genes dis-
covered do not have sufficient
sequence similarity to known genes
to transfer functional annotation.
The information content of sequence
data alone may therefore not be suf-
ficient for functional annotation.
This has resulted in the development
of computational techniques that
include other sources of data such as
the 3-D structure of proteins.

Using Protein Structure Data for
Identifying Molecular Function
The 3-D structure of a protein is
becoming an increasingly important
source of data for identifying molec-
ular function. Structure and func-
tion are intimately related, and this
relationship is only revealed when
the detailed 3-D atomic structure of
a protein is obtained experimentally.
The function or activity of a protein
can generally be attributed to a spe-
cific arrangement of atoms within
what is known as the active site of
the protein. Structural genomics ini-
tiatives [12] are attempting to deter-
mine the structure of all proteins on
the basis of the direct relationship
between structure and function. The
Protein Data Bank [13] (PDB:
http://www.pdb.org/) provides a
central resource for storing publicly
available protein structures (mostly
from X-ray crystallography and
NMR spectroscopy) and is an excel-
lent source of structural data.

The simplest approach for using
3-D structure in a machine learning
framework is to use the 3-D atomic
coordinates as features. PROCAT
[14] identifies conserved atoms in
proteins and searches new 3-D struc-
tures for occurrences of these struc-
tural templates using geometric
hashing. A disadvantage of working
in Cartesian space is that the atomic
positions are not perfectly conserved,
resulting in noisy data. Alternatively,
Fetrow et al. use distances between
atoms as features (FFF [15]), as
these have been found to be more
highly conserved because molecular
function generally depends on the
relative distance between atoms and
not their absolute coordinates.

In some situations, however,
molecular function is still maintained
even if one atom is replaced with
another, as long as it has similar
physicochemical properties. In these
situations, using the 3-D coordi-
nates or relative distances is not suf-
ficient; however, conservation of

physicochemical properties can be
used to identify function. Wei et al.
have developed a tool, FEATURE
[16], for describing the 3-D struc-
tural environment around a func-
tional site using the distribution of
physicochemical properties in its
microenvironment. Given a set of
structures representing a site and a
background set of structures that do
not have this site, FEATURE auto-
matically identifies statistically signif-
icant properties in the environment
that discriminate the site from the
background. In addition, it provides
a statistical 3-D model of the func-
tional site which can be used to pre-
dict locations of functional sites on
new protein structures. FEATURE
uses naïve Bayes to perform discrim-
inant analysis of example sites from
nonsites and uses a nonparametric
Wilcoxon rank sum test to identify
properties significant for function.

For FEATURE to be effective in
genomic-scale analysis of protein
function, a library of models of
functional sites is necessary. Liang
et al. have developed SeqFEATURE
[17], that integrates sequence analy-
sis information, using sequence
motifs, with structural analysis infor-
mation used by FEATURE to auto-
matically generate a library of
models. By integrating the con-
served physicochemical properties in
the structural environment around
sequence motifs, Liang et al. have
shown that the resulting structural
motif has better performance in pre-
dicting functional sites than the
sequence motif alone. Because the
method is fully automatic, a library
of models can be created from a
database of sequence motifs. FEA-
TURE and SeqFEATURE provide
a way of annotating protein struc-
tures with protein function useful
for high-throughput annotation of
protein function.

Cellular Function
Cellular function is the regulation of
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genes and interaction of proteins to
perform cellular processes, such as
cellular growth, communication,
and metabolism. The central dogma
of biology states that genes (DNA)
are transcribed into ribonucleic acid
(RNA), and that RNA is in turn
translated into proteins. The regula-
tion of a gene at the transcriptional
or translational level thus results in
varying activity of the protein prod-
uct. The level of transcriptional
expression of a gene can be mea-
sured experimentally using a variety
of “GeneChips” or microarrays in a
high-throughput manner. It is now
possible to measure the relative
expression level of over 60,000
genes in a single experiment.

When a gene is transcribed, it is
said to be turned on or expressed.
Careful regulation of both the tim-
ing and the amount of gene expres-
sion is required for proper cellular
function. Defects in regulation can
result in serious consequences for
the cell such as uncontrolled cellular
growth in cancer metastasis.
Proteins interact together in path-
ways to perform cellular function.
There are many types of pathways in
a cell, including signaling pathways
and metabolic pathways. In signal-
ing pathways, a signal from external
stimuli or from a change in the state
of a cell is propagated from one part
of the cell to another. In metabolic
pathways, the cell breaks downs or
creates substances to generate ener-
gy and to maintain its function. In
general, when referring to the cellu-
lar function of a gene, the reference
is actually to the function of the
pathway that the gene participates
in. If two genes have the same cellu-
lar function, then they participate in
the same pathway. Cellular function
of a gene can be identified using
gene sequence data, microarrays,
biological literature, and other data
sources. Computational challenges
include predicting how genes are
regulated, which proteins participate

in a pathway, and how proteins
interact in a pathway.

Using Gene Sequence Data for
Identifying Cellular Function
Special proteins known as transcrip-
tion factors bind to regions near a
gene and regulate gene expression.
These specific regions are called
transcription factor binding sites
and are a type of regulatory element
that controls gene expression. An
important strategy for identifying
gene function is finding regulatory
elements in the genes. If a new gene
shares a common regulatory ele-
ment with other genes, the cellular
function of the new gene may be
inferred from the function of the
other genes. Many methods have
used this principle to find common
regulatory elements from a set of
gene sequences.

Using Gene Expression Data
and Other Data Sources for
Identifying Cellular Function
Genes in the same pathway often
have similar expression profiles. A
microarray experiment is a powerful
way of measuring the level of expres-
sion of all genes in a cell in one
experiment. Successive microarray
experiments can take snapshots of
gene expression under different con-
ditions or over a period of time.
Finding correlated patterns of gene
expression across these experiments
can group genes that belong to the
same pathway. In addition, by com-
paring gene expression across differ-
ent experimental conditions (such as
cancer cells versus normal cells),
genes that have differential expres-
sion can be used as indicators for
those conditions. This indirect
method of assigning function based
on coregulation or interaction is
often termed the “guilt by associa-
tion” method of assigning function.
Although genes with the same cellu-
lar function often have correlated
expressions, the converse is not

always true, a limit of the “guilt by
association” approach. Genes with
correlated expression do not neces-
sarily have the same cellular function.
Finding genes that truly have com-
mon cellular function is a key chal-
lenge in analyzing gene expression
data. Stuart et al. address this issue
by looking for conserved correlation
of expression across diverse organ-
isms [18]. If the same genes have
correlated expression across various
organisms, their cellular function is
probably a core function critical for
survival. Hence, correlated expres-
sion of genes across diverse organ-
isms strongly indicates that the genes
have common cellular function.

Protein-protein interactions are
also very important for understanding
cellular function because proteins
that interact are likely to participate
in the same pathway. Yeast two
hybrid and co-immunoprecipitation
experiments are methods for rapidly
identifying protein-protein interac-
tion. By performing interaction
experiments on all pairs of proteins,
an interaction matrix can be generat-
ed. These experiments can generate
large amounts of data that are often
noisy or contain missing values. A
key challenge is to find proteins in
these interaction matrices that are
part of the same pathway as well as
to identify their cellular function.

Microarray and yeast two-hybrid
experiments are two examples of
genome-wide experiments where
quality is often sacrificed for scale,
resulting in highly noisy data.
However, accurate biological con-
clusions can still be made based on
these data if heterogeneous data
sources are examined simultaneous-
ly. Segal et al. have built a method
for predicting pathways by combin-
ing gene expression data and tran-
scription factor data in a relational
Markov network [19]. Troyanskaya
et al. incorporate even more dis-
parate sources with their method
MAGIC (multisource analysis by
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grouping and integration of clusters)
[20]. MAGIC combines data from
protein interactions, genetic associa-
tions, transcription factor binding
sites, and gene expression analysis in
a Bayesian network. Troyanskaya et
al. found that by integrating multi-
ple sources, predicting cellular func-
tion of interacting genes was
considerably more accurate than
using individual data sources alone.

The biomedical literature is also
an important source of functional
information. This large body of
information documents the results
of decades of study on cellular func-
tion. Public databases like PubMed
(http://www.pubmed.org/) store
abstracts and links to full text arti-
cles of these documents. Article
abstracts often outline the key find-
ings in papers. Biomedical literature
is thus a rich source of information
about cellular function that can be
used to inform predictions of func-
tion on new genes. A difficulty in
working with l iterature is the
unstructured nature of the docu-
ments. There have been limited
efforts to codify the genes and
functions referenced in subsets of
the biomedical literature that focus
on specif ic organisms. For
instance, articles studying yeast
have been manually codified using
gene ontology by a team of experts
[21]. Automated analysis of
biomedical literature still remains a
key open challenge.

Raychaudhuri et al. address this
problem by combining biomedical
literature with gene expression data
to determine which genes with corre-
lated expression have the same cellu-
lar function. Their neighbor
divergence per gene (NDPG)
method [22] use coherence of
PubMed articles to score how likely
genes with correlated expression have
the same cellular function. The intu-
ition behind NDPG is that if a group
of genes have the same cellular func-
tion, then PubMed articles that refer

to the group should have semantic
neighbors which also refer to the
group. These methods demonstrate
an approach of dealing with noisy
and sparse data through integrating it
with other diverse data sources.

Physiological Function
The physiological function of a gene
is the effect that a gene has on the
entire organism, as is perceived
through its phenotype. The pheno-
type of an organism is its physical
appearance or behavior, such as eye
color and side effects to drug thera-
py. Genotype is the genetic make-
up of an organism. The phenotype
of an organism is affected by its
genotype and its environment. A
key challenge is to correlate varia-
tions in the organism’s genotype to
variations in its phenotype.

Using Biomedical Literature to Identify
Gene and Drug Relationships
Pharmacogenomics studies focus on
correlating an organism’s genotype
with drug efficacy. By understand-
ing how genes and drugs relate,
drug therapy can be tailored to an
individual’s unique genetic make-
up. The Pharmacogenomics and
Pharmacogenetics Knowledge Base
(PharmGKB) [23] provides a cen-
tral repository for data involving
variations in genes and their effect
on drug response. Much of the data
stored in PharmGKB are manually
curated from biomedical literature,
which provides an important source
of information about genes and
drugs. Unfortunately, manual cura-
tion of biomedical literature is very
slow and inefficient. Because
research articles are not stored in a
structured format, automating the
extraction of gene-drug relation-
ships is an important challenge.
Chang et al. use natural language
processing techniques to identify
gene-drug relationships in the
biomedical literature [24]. Chang
et al. use co-occurrences of genes

and drugs in the literature to first
identify whether genes and drugs
are related, and then employ a maxi-
mum entropy classifier to classify
gene-drug relationships. Automated
analysis of pharmacogenomics data
from biomedical literature is still an
active area of research.

Challenges
Understanding gene function at the
molecular, cellular, and physiological
level each poses numerous challenges.
Below we present some key examples
of research areas where advances in
computational methodology may
potentially impact the field. The list
below is not exhaustive but represents
areas with current high activity and
where there is still great potential for
computational improvements.

Molecular Function Challenges
Current open questions at the
molecular scale include:
▲ 1) Annotating genomes. Genomes
of many organisms have been
sequenced, but identification of the
exact sequence and structure of
every gene in the genome and their
regulation remains a challenge. In
the human genome, even the esti-
mates for the exact number of genes
range widely from 30,000 to
120,000. In addition, in eukaryotes
the same gene can encode for more
than one protein through the pro-
cess called alternative splicing.
Recent analyses indicate that
40–60% of human genes are pre-
dicted to have alternative splice
forms. Identification of gene loca-
tions, their regulation, their prod-
ucts, and their function is an open
area of research that can benefit
from machine learning methods and
other engineering principles.
▲ 2) Identifying functional regions
in proteins. Identifying the exact
area of a protein that is responsible
for biological function is critical for
modeling the fundamental mecha-
nisms of protein activity as well as
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developing pharmaceutical drugs.
Accurate analysis of protein
sequence and structure to define
specific regions or residues of a pro-
tein that can be linked to a specific
function is an area where machine
learning and signal processing
methods can be of great benefit.
▲ 3) Identifying protein interactions
and their mechanisms. Even when a
functional site of a protein is
known, understanding what
molecules the protein interacts with,
as well as the mechanism of the
interaction, remains an open ques-
tion. The dynamics of this interac-
tion is also critically important. For
example, in pharmaceutical develop-
ment it is important to know the
strength and transiency of interac-
tion between a drug and protein.

Cellular Function Challenges
Current open questions at the cellu-
lar scale include: 
▲ 1) Identifying biological pathways.
To understand how cells operate, it
is critical to understand function and
regulation of specific pathways in the
cell. A key challenge here is to identi-
fy which proteins participate in spe-
cific pathways (e.g., proteins
involved in fatty acid metabolism)
and how members of a pathway
interact with one another. Further-
more, it is necessary to understand
and accurately model pathway com-
ponents and regulation as well as
their fault-tolerant properties. One
application of these models would be
development of drugs that target
nonrobust or nonredundant path-
ways in pathogens, which is an effec-
tive way to fight certain diseases.
▲ 2) Quantifying the dynamics of
biological networks. Biological path-
ways interact and interconnect in
the cell to form networks. Modeling
the structure and dynamics of bio-
logical networks is critical for under-
standing how a cell functions and
how it is affected by environmental
conditions. A key outcome of this

challenge is creating an accurate
functional model of the cell.
▲ 3) Engineering biological net-
works. An emerging research area is
design of artificial genetics circuits
inside living cells. These circuits can
be used to study cellular function
and regulation in simplified and
controlled systems, as well as to cre-
ate cells with specific properties,
such as bacteria engineered for
detecting chemicals and for biore-
mediation [25]. Circuit diagrams
can be designed using computation-
al and modeling tools, and then
constructed inside cells using exper-
imental techniques.

Physiological
Function Challenges
Research on gene function at the
organism level has only begun
recently and the area poses many
open questions. At a broad level,
challenges at the organism level
include:
▲ 1) Correlating genotype to organ-
ism level effects. The variety of phe-
notypes observed among one species
is formed through the interaction of
each individual’s genotype with its
environment. These variations in
genotype can arise from single
nucleotide mutations or from modi-
fications and deletions of whole
genes. Computational and experi-
mental researchers need to model
effects of changes in the genomic
composition of an organism on the
organism’s fitness and survival. Such
models will improve our under-
standing of fundamental biology and
may lead to development of novel
treatments for disease that are tar-
geted to each individual’s genotype.
▲ 2) Extracting knowledge from
biomedical literature. Most of human
knowledge about biology is summa-
rized in the biomedical literature in
the form of volumes of articles
reporting biological experiments,
clinical studies and their results.
Unfortunately, information in these

articles is not stored in a structured
format and thus is mostly inaccessi-
ble to computational analyses.
Accurate natural language processing
techniques are needed to mine
biomedical literature for information
and present the resulting data in a
format that computers can effectively
utilize. Furthermore, development of
new controlled vocabularies and
ontologies of concepts and relation-
ships is necessary to represent this
knowledge in a computationally
accessible form.

The biological challenges
described above share a common set
of computational challenges. In the
post-genomic era, large quantities
of biological data are being pro-
duced, and these data need to be
stored, processed, and mined for
relevant biological information.
These large-scale data are heteroge-
neous, and thus novel methods are
necessary that can deal with integra-
tion as well as provide fast and accu-
rate analysis of these diverse data
sources. Biological data are often
noisy and many problems posed in
bioinformatics do not have true
gold standard solutions, therefore
machine learning methods for bio-
logical data should be robust to
noise, number, and quality of the
examples. These computational
challenges are not unique to the
biological domain. Expertise from
researchers in the signal processing,
computer science, and other engi-
neering disciplines can provide criti-
cal insight and innovation on
applying new methodology to the
biological field.

Conclusion
The exponential growth of publicly
available data has transformed biol-
ogy into an information rich science
that provides many new and inter-
esting applications for the machine
learning community. Biological data
is especially challenging to analyze
because it is inherently noisy and
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biased. The research presented in
this review illustrates how both
effective representation of these data
and proper feature selection are crit-
ical to the success of a particular
computational functional genomics
approach. Ultimately, the success of
a computational method in
genomics is defined by whether it
furthers scientists’ understanding of
the biological system in question.

This review of research in compu-
tational functional genomics high-
lights the types of computational
challenges that arise in functional
genomics and current methodologies
that are employed. Further informa-
tion about computational biology is
available from the International
Society for Computa-tional Biology
(http://www.iscb. org/) and confer-
ences such as the Intelligent Systems
in Molecular Biology conference,
Pacific Symposium on Biocomputing,
the Research in Computational
Molecular Biology conference and
the IEEE Computer Society
Bioinformatics conference. The signal
processing community has much
experience in developing robust and
rapid techniques for analyzing large
data sets that are noisy and biased. We
hope that this review provides an
introduction to the field of computa-
tional functional genomics for mem-
bers of the IEEE community.
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Jersey. Douglas L. Brutlag is with
the Department of Biochemistry,
Stanford University Medical Center,
Stanford, California.

References
[1] B. Boeckmann, A. Bairoch, R. Apweiler, et al.,

“The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003,” Nucleic
Acids Res., vol. 31, pp. 365–370, 2003. 

[2] R. Apweiler, A. Bairoch, C.H. Wu, et al.,
“UniProt: The universal protein knowledge
base,” Nucleic Acids Res., vol. 32 Database
issue, pp. D115–9, 2004.

[3] C.H. Wu, L.S. Yeh, H. Huang, et al., “The
protein information resource,” Nucleic Acids
Res., vol. 31, pp. 345–347, 2003. 

[4] T.F. Smith and M.S. Waterman, “Identification
of common molecular subsequences,” J. Mol.
Biol., vol. 147, pp. 195–197, 1981. 

[5] S.F. Altschul, W. Gish, W. Miller, et al., “Basic
local alignment search tool,” J. Mol. Biol., vol.
215, pp. 403–410, 1990. 

[6] O. Gotoh, “Multiple sequence alignment: algo-
rithms and applications,” Adv. Biophys., vol. 36,
pp. 159–206, 1999. 

[7] J.D. Thompson, D.G. Higgins, and T.J. Gibson,
“CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment
through sequence weighting, position-specific
gap penalties and weight matrix choice,”
Nucleic Acids Res., vol. 22, pp. 4673–4680,
1994. 

[8] P. Bucher and A. Bairoch, “A generalized pro-
file syntax for biomolecular sequence motifs and
its function in automatic sequence interpreta-
tion,” in Proc. Int. Conf. Intell Syst. Mol. Biol., 
1994, vol. 2, pp. 53–61.

[9] E.L. Sonnhammer, S.R. Eddy, and R. Durbin,
“Pfam: A comprehensive database of protein
domain families based on seed alignments,”
Proteins, vol. 28, pp. 405–420, 1997. 

[10] C.G. Nevill-Manning, T.D. Wu, and D.L.
Brutlag, “Highly specific protein sequence
motifs for genome analysis,” Proc. Natl. Acad.
Sci. USA, vol. 95, pp. 5865–5871, 1998. 

[11] T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag,
“Fast probabilistic analysis of sequence function
using scoring matrices,” Bioinformatics, vol. 16,
pp. 233–244, 2000. 

[12] S.E. Brenner, “A tour of structural genomics,”
Nat Rev Genet, vol. 2, pp. 801–809, 2001. 

[13] H.M. Berman, J. Westbrook, Z. Feng, et al.,
“The Protein Data Bank,” Nucleic Acids Res.,
vol. 28, pp. 235–242, 2000. 

[14] A.C. Wallace, N. Borkakoti, and J.M.
Thornton, “TESS: A geometric hashing algo-

rithm for deriving 3D coordinate templates for
searching structural databases. Application to
enzyme active sites,” Protein Sci., vol. 6, pp.
2308–2323, 1997. 

[15] J.S. Fetrow, A. Godzik, and J. Skolnick,
“Functional analysis of the Escherichia coli
genome using the sequence-to-structure-to-
function paradigm: Identification of proteins
exhibiting the glutaredoxin/thioredoxin disul-
fide oxidoreductase activity,” J. Mol. Biol., vol.
282, pp. 703–711, 1998. 

[16] L. Wei and R.B. Altman, “Recognizing pro-
tein binding sites using statistical descriptions of
their 3D environments,” in Proc. Pac. Symp.
Biocomput, 1998, pp. 497–508.

[17] M.P. Liang, D.L. Brutlag, and R.B. Altman,
“Automated construction of structural motifs
for predicting functional sites on protein struc-
tures,”  in Proc. Pac. Symp. Biocomput, 2003,
pp. 204–215.

[18] J.M. Stuart, E. Segal, D. Koller, and S.K. Kim,
“A gene-coexpression network for global dis-
covery of conserved genetic modules,” Science,
vol. 302, pp. 249–255, 2003. 

[19] E. Segal, H. Wang, and D. Koller, “Discovering
molecular pathways from protein interaction and
gene expression data,” Bioinformatics, vol. 19
Suppl 1, pp. I264–I272, 2003. 

[20] O.G. Troyanskaya, K. Dolinski, A.B. Owen, 
et al., “A Bayesian framework for combining
heterogeneous data sources for gene function
prediction (in Saccharomyces cerevisiae),” Proc
Natl. Acad. Sci. USA, vol. 100, pp.
8348–8353, 2003 

[21] L. Issel-Tarver, K.R. Christie, K. Dolinski, 
et al., “Saccharomyces Genome Database,”
Methods Enzymol, vol. 350, pp. 329–346, 2002. 

[22] S. Raychaudhuri and R.B. Altman, “A litera-
ture-based method for assessing the functional
coherence of a gene group,” Bioinformatics,
vol. 19, pp. 396–401, 2003. 

[23] M. Hewett, D.E. Oliver, D.L. Rubin, et al.,
“PharmGKB: The pharmacogenetics knowledge
base,” Nucleic Acids Res., vol. 30, pp. 163–165,
2002. 

[24] J.T. Chang, “Using machine learning to
extract drug and gene relationships from text,”
Stanford Univ., 2003. 

[25] M.E. Wall, W.S. Hlavacek, and M.A.
Savageau, “Design of gene circuits: Lessons
from bacteria,” Nat. Rev. Genet., vol. 5, 
pp. 34–42, 2004. 


	footer1: 


