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Abstract
Most computational models of protein-ligand interactions
consider only the energetics of the final bound state of the
complex and do not examine the dynamics of the ligand as
it enters the binding site.  We have developed a novel
approach to study the dynamics of protein-ligand
interactions based on motion planning algorithms from the
field of robotics.  Our algorithm uses electrostatic and van
der Waals potentials to compute the most energetically
favorable path between any given initial and goal ligand
configurations.  We use probabilistic motion planning to
sample the distribution of possible paths to a given goal
configuration and compute an energy-based "difficulty
weight" for each path.  By statistically averaging this
weight over several randomly generated starting
configurations, we compute the relative difficulty of
entering and leaving a given binding configuration.  This
approach yields details of the energy contours around the
binding site and can be used to characterize and predict
good binding sites.  Results from tests with three protein-
ligand complexes indicate that our algorithm is able to
detect energy barriers around the true binding site that
distinguish this site from other predicted low-energy
binding sites.

1.  Introduction   

The process of molecular recognition and binding is
central to all biochemical processes and has been studied
through a variety of computational techniques.  Most of
these techniques are based on discrete representations of
the binding process and consider only static properties of
binding, such as the energy of the final bound complex.  In
this paper, we present a novel approach to study the
dynamics and kinetics of flexible ligand binding using
robotic motion planning.

Several algorithms have been developed for studying
and predicting protein-protein and protein-ligand
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interactions [Kuntz et al., 1982; Shoichet and Kuntz, 1993;
Leach, 1994; Fisher et al., 1995; Oshiro et al., 1995;
Lengauer and Rarey, 1996; Rarey et al., 1996; Sobolev et
al., 1996; Gabb et al., 1997; Jones et al., 1997; Lenhof,
1997; Morris et al., 1998].  In the case of protein-protein
binding, algorithms have been developed to predict the
contact surfaces involved in the interaction and the
conformation of the final bound complex.  Due to
complexity of the binding surfaces, these techniques are
computationally intensive and often make the
approximation that both molecules are rigid.
Computational models of protein-ligand binding face a
different but equally challenging set of problems due to the
smaller size but greater flexibility of the ligand molecule.
One objective of these systems is to scan a protein against
a library of small ligands to find those that may bind to the
protein and hence form a basis for potentially active drugs.
Most computational models of receptor-ligand interactions
are based only on the energetics of the ligand in its final
bound conformation and do not take into account the
dynamics of the ligand as it enters the binding site.  These
models attempt to compute, for any given receptor, the
conformation of the ligand that maximizes a heuristic
energy score.  This score is usually based on an ad-hoc
model of the free energy of binding or the absolute energy
of the substrate.  Since these techniques only consider
discrete instances of the receptor-ligand complex they
cannot explicitly measure thermodynamic or kinetic
properties of the binding process.

In order to study thermodynamic and kinetic properties
of binding, researchers have relied mainly on
computationally intensive simulation techniques.  These
methods attempt to use time averaging or ensemble
averaging to calculate properties such as the free energy of
binding or the rates of association and dissociation.  The
two principal simulation techniques used are molecular
dynamics and Monte Carlo simulation.  Molecular
dynamics attempts to simulate the true dynamics of a
system using Newton’s equations of motion [Anderson,
1980; McCammon, 1987; Haile, 1992; Daggett and Levitt,
1993; Leach and Klein, 1995].  Monte Carlo methods use a
randomized approach to generating successive ligand



configurations and compute thermodynamic properties by
averaging over all samples that were generated
[Rubinstein, 1981; Knegtel et al., 1994; Cummings et al.,
1995].  While both molecular dynamics and Monte Carlo
methods are theoretically capable of estimating the
thermodynamic properties of a receptor-ligand interaction,
they require very large amounts of computation time for
ligands with many degrees of freedom.

We present a novel approach to studying the dynamics
and kinetics of protein-ligand interactions by estimating
the motion of the ligand during the process of binding.
Our approach attempts to improve the speed and efficiency
of simulation methods by using algorithms based on robot
motion planning [Latombe, 1991].  In essence, we alleviate
the time dependency of molecular dynamics methods and
the Markov dependency of Monte Carlo methods by
sampling from the space of all possible paths that a ligand
may take as it binds to the receptor protein.  Hence, instead
of simulating the binding process, we effectively guess
several possible intermediate configurations of the ligand
and obtain a distribution of energetically favorable paths to
the binding site (via these intermediate configurations).
For each path, we generate a “difficulty weight” that
represents the energy barriers that the ligand encounters
along the path.  For instance, paths that require crossing
over large energy barriers are more difficult and are hence
given higher weights than those following a descending
energy field.  By randomly generating several starting and
ending configurations we can therefore estimate the
average difficulty of entering or leaving different sites on
the receptor protein.  These numbers can be further used to
estimate rates of binding and dissociation (Kon and Koff).
Using motion planning to model the dynamics of the
protein-ligand interactions can provide significant insights
into the process of binding that would not be possible
through traditional static models.  For instance, tracking
the intermediate states traversed by the ligand could
indicate topological regions around the receptor that
represent transition states or energy barriers.

We have tested our algorithm on three protein-ligand
complexes.  For each complex, we use our technique to
examine the average difficulty weight of all paths into the
true binding site and compare the numbers obtained with

the scores for various other potential binding sites.  We
also use our randomized motion planning algorithm to
predict low-energy binding sites on the surface of the
protein.

2.  Ligand Modeling

Robot motion planning is applicable to the study of
receptor-ligand interactions due to the fact that a flexible
ligand can be naturally modeled as an ‘articulated robot’
(Figure 1).  An articulated robot typically consists of
several links that can rotate around or translate along one
or two axes (joints).  We model the ligand as an articulated
robot with a free base.  Each atomic bond of the ligand
molecule maps to a joint of the robot with torsional
freedom of motion.  Bond angles and bond lengths are
kept constant.  The root atom, which represents the free
base of the robot, is an arbitrarily chosen terminal atom
from the ligand.  It is given 5 degrees of freedom: 3 to
specify its coordinates and 2 to specify the orientation of
its only bond.  Each additional non-terminal atom requires
only a single torsional angle to define the orientation of the
molecule.  Bonds involved in a ring are modeled as being
completely rigid (i.e., no torsional freedom), which is
generally true of most organic molecules.  Terminal
hydrogen atoms are not explicitly modeled, but are
accounted for by increasing the radius of the associated
atoms.

3.  Motion Planning using Probabilistic
Roadmaps

The traditional framework of robot motion planning is
based on manipulating a robot through a workspace while
avoiding collisions with obstacles in this space.  Our
application of motion planning, on the other hand, is aimed
at determining potential paths that a robot (or ligand) may
naturally take based on the energy distribution of its
workspace.  Hence, instead of inducing the motion of the
robot through actuators, we examine the possible motions
of the robot induced by the energy landscape of its
immediate environment.

(a) (b)
Figure 1.  (a) A ligand with 8 degrees of freedom (3 coordinates (x,y,z) and 2 angles (α,β) for the

root atom plus one torsional angle (ψ) for each non-terminal atom).  (b) A 2-dimensional fixed
base articulated robot with 5 degrees of freedom (one rotation angle (φ) for each joint).
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Given a starting and ending configuration of a ligand,
motion planning algorithms attempt to determine a
collision-free path between these two configurations.
Paths are usually computed in the configuration space (or
C-space) of the robot, which contains one dimension for
each degree of freedom of the robot.  Motion planning in a
high-dimensional configuration space is a difficult task and
several techniques have been developed to address this
problem [Faverjon and Tournassound, 1990; Ahuactzin et
al., 1992; Barraquand and Latombe, 1991; Barraquand and
Ferbach, 1994; Kavraki, 1995; Kavraki et al., 1996; Hsu et
al, 1997].

Probabilistic Roadmap Planners (PRMs) [Kavraki et al.,
1996] are particularly suited for our application since they
can efficiently handle robots with many degrees of
freedom and can be extended to represent energetic
constraints in C-space.  A roadmap, as the name implies, is
a set of milestones or nodes, each of which is connected to
several close neighbors by physically realizable paths.  It is
represented computationally as an undirected graph and is
used to capture the connectivity of the configuration space
in which the robot is maneuvering (Figure 2a).  The
roadmap is constructed by selecting a set of milestones
from the C-space of the robot and then connecting each
milestone to several of its nearest neighbors by a local
path-planning algorithm.  Complete representation of
obstacles (in our case the receptor protein) in a high-
dimensional C-space is computationally impractical.
Hence, milestones in a high-dimensional C-space are not
selected deterministically and are instead generated by
sampling randomly from this space.  The local path
planner determines whether a path exists between any two
nodes by connecting them with a straight line in C-space
and testing this path for collisions (Figure 2b).  Note that
though the local paths are straight lines in C-space, they
usually represent complex non-linear motions in physical
3D space.  Once the roadmap is constructed, the robot can
be maneuvered between two arbitrary initial and final
configurations by simply finding, for these configurations,
the two nearest milestones on the roadmap to which it can

be connected by the local planner.  A path between these
two milestones can then computed by performing a graph
search on the roadmap.

The fundamental difference between our application of
PRMs and prior applications of this technique is our use of
energy values in C-space to estimate the naturally induced
motion of the ligand.  We are interested not only in finding
whether a path exists, but also, whether the path is
energetically favorable.  Thus, while traditional PRM
planners require only a binary test to determine whether a
particular point in C-space corresponds to a collision
between the robot and the obstacle, we need to compute a
continuous energy value for all of these points.  Since any
given point in C-space corresponds to a particular
configuration of the ligand, we compute the total energy at
this point by summing the individual energy contributions
of all ligand atoms in the corresponding configuration.  We
use a potential function consisting of electrostatic and van
der Waals components to compute the energy of
interaction of the ligand with the receptor.  The
electrostatic potentials are computed using the Poisson-
Boltzmann equation, which models both solvent and ionic
effects.  We use the Delphi program [Sharp and Honig,
1990] to compute an electrostatic potential grid at a
resolution of 0.5 Å.  The van der Waals potentials are
computed on the same grid by calculating, for each grid
point, the potential contribution of all receptor atoms
within a threshold distance of 10 Å.  Different grids are
computed to deal with the different radii of ligand atoms.
Thus the energy of interaction of the ligand with the
receptor is computed by simply looking up the electrostatic
and van der Waals potentials at the grid points closest to
each of the ligand atom.  The internal energy of the ligand
(i.e., energy of interaction of the ligand atoms with each
other) is computed using standard Coulombic and van der
Waals equations.

The following two sections (3.1 and 3.2) describe in
detail the two fundamental steps of our energy-based
motion planning algorithm, i.e., generating milestones and
constructing the roadmap using the local path planner.

(a) (b)
Figure 2. (a) Schematic representation of a roadmap in a six dimensional configuration space.  The

irregular shaded regions represent obstacles.  (b) Local path planning using discretized configurations
along a straight-line path in configuration space. Paths with collisions (“--”) are rejected.



Section 3.3 describes the methods used to search the
roadmap and compare different potential binding sites.
Finally, section 3.4 presents a simple algorithm that uses
the previously generated milestones to predict potential
binding sites.

3.1.  Generating milestones
Our model of the ligand assigns each degree of freedom of
the molecule to a separate dimension in C-space.  Hence,
ligand configurations are generated by simply assigning
random values to each coordinate in this high-dimensional
space.  For each sample that is generated, its total energy is
computed and used to determine whether or not the sample
will be accepted as a milestone.  As described in the
previous section, the total energy of the ligand is computed
based on electrostatic and van der Waals potentials.  Since
this term includes the exponentially high van der Waals
energies at short inter-atomic distances, it completely
models collisions between the ligand and the protein as
well as self-collisions of the ligand atoms with each other.
In addition to eliminating all points in C-space that involve
collisions, we also bias our sampling process to generate
more milestones in regions of low energy.  Hence, a
randomly generated ligand configuration is accepted as a
milestone with the following probability:

This method of probabilistic collision checking therefore
results in a denser sampling of low-energy regions of C-
space.  For this study, we set Emax to 5 kcal/mol and Emin to
–20 kcal/mol.

3.2  Constructing the roadmap
The probabilistic roadmap is constructed by first obtaining
a set of S randomly generated milestones and then
connecting pairs of milestones using the local path planner.
The following algorithm is used to construct the roadmap
from the set of randomly generated milestones (i.e. nodes):

1. For each node i (0 <= i < S)
1.1. Sort all remaining nodes (i.e., with index > i)

based on their distance from i
1.2. While the number of edges at node i < N

1.2.1. Use the local path planner to connect i to its
first un-tested nearest neighbor (i.e., a node
to which an edge has not yet been
attempted with the local path planner)

The above algorithm results in an undirected graph with
approximately N edges at each node.  The distance
function we used in step 1.1 above is the distance between
the center of gravity of the two configurations, though
other metrics are also possible.  In our implementation we
set N to the number of degrees of freedom of the ligand
(#dof).  In addition, if after M attempts with the local path
planner a node does not form at least N edges, it is
transferred to the connectivity enhancement step
(described at the end of this section), after which the
roadmap construction proceeds with the next milestone in
the set S.  This is done to place an upper bound on the
number of times the local path planner is executed, since it
is the most computationally intensive step of the algorithm.
Setting M to about 3 to 5 times N usually results in
acceptable execution times.

The local path planner we use is a modification of the
one described in Kavraki et al., 1996.  The planner
connects two given milestones by a straight line in C-space
and determines whether this straight-line path is
energetically feasible (i.e., collision free).  The path is
tested by discretizing the line segment into a series of
consecutive configurations, each separated by a maximum
distance ε.  The path is accepted only if all the
configurations along the path have energy less than a
maximum energy threshold (usually 5-10 kcal/mol).  In
our implementation, we discretize the straight line path
such that the maximum distance between any two
corresponding atoms in two adjacent configurations is less
than 1 Å (i.e., ε = 1 Å).

For each accepted path, our local path planner also
computes a weight representing the energetic favorability
of the path.  This weight reflects the difficulty of traversing
the path and is hence higher for paths that require crossing
over large energy barriers.  We use the energy of each
discretized configuration along the path to determine the
overall probability of traversing the path in a particular
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Figure 3.  An energy contour for a path in a 1-dimensional configuration space.
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direction.  Figure 3 is a simple energy contour for a
straight-line path between two nodes in a 1-dimensional
configuration space.  The line segment between nodes A
and B is discretized into consecutive configurations that
are less than ε units apart.  For any three successive
discretized configurations along the straight line path (i-1,
i, and i+1 with energies Ei-1, Ei, and Ei+1) we use the
following equation to determine the probability of moving
from configuration i to i+1:

Using the above equation we compute the total weight of
the path between A and B as:

Note that the path weight is not the same in both
directions, though both weights can be computed
simultaneously.

We use this paradigm of motion along a single
dimension to compute difficulty weights for all local paths
in our roadmap.  Though each discretized configuration
along the line segment is free to move in several
dimensions along the path, we limit its motion along a
single dimension (i.e.,. either forward or backward) along
the path.  This is analogous to placing infinitely high
energy barriers on either side of the path thus forcing only
linear motion along the bottom of this artificial energy
valley.  This approximation, though seemingly severe, is
mitigated by the fact that all paths between nodes are short
and of similar length.  Since the approximation becomes
worse as the length of the path increases, minimizing the
path lengths by increasing the number of milestones and
linking them only after all samples have been created,
reduces the over-all error.  In addition, since this model
does not give adequately high weights to longer paths, we
compensate for this difference by adding a weighted path
length to the total weight of each edge.

Since the surface of the receptor protein is highly
convoluted with many narrow cavities, milestones
generated close to this surface are generally difficult to
connect to the roadmap.  Therefore, there are often several
nodes in the graph that have less than N edges connecting
them to other milestones in the roadmap (where N = #dof).
To increase the connectivity of the roadmap in these
regions, we added a connectivity enhancement phase to the
roadmap construction algorithm.  For each milestone j with
less than N edges, this enhancement algorithm creates
additional nodes close to this milestone by using the paths
that failed due to the presence of a high-energy
configuration along the path.  These new nodes are created
just before the high-energy configuration is encountered
and are therefore guaranteed to connect to milestone j.
The extra nodes that are generated are added to the set of

milestones, thus allowing all remaining nodes to be
connected to these newly created milestones.

3.3  Searching the roadmap
The roadmap constructed as above represents a distribution
of plausible paths of the ligand through the space
surrounding the receptor protein.  The sum of the local
path weights between any one node and all other
remaining nodes of the roadmap reflect the kinetic and
dynamic properties of the motion between these nodes.

For any randomly generated initial and goal
configurations, we compute the minimum-weight path
between them by first finding the milestones in the
roadmap that can be most easily reached from these two
arbitrary configurations (i.e., the milestones that are closest
to and have the lowest weight to these configurations).  A
graph search is then performed to find the minimum-
weight path between these two milestones in the roadmap.
Since two weights are recorded for each edge representing
the two opposite directions of motion, the minimum-
weight path in either direction can be computed.  The
graph search is performed using Dijkstra’s single-source
shortest-path algorithm.  This algorithm can either be
terminated as soon as the end node is reached or it can be
continued until all nodes have been discovered.  The latter
allows us to compute the distribution of all paths entering
or leaving a given node.  By computing the minimum
weight for all of these paths, we can obtain an estimate for
the average difficulty of all paths entering or leaving a
given node.  These two numbers can be correlated with the
kinetic rates of binding (Kon) and dissociation (Koff) for this
node.  In this paper, we use these average weights to
estimate the energy barriers around the binding site and to
distinguish the true binding site from other predicted low-
energy active sites.

3.4  Predicting binding sites
Though our energy based motion planning technique can
be effectively used to examine the kinetics and dynamics
of ligand binding, often the true binding site on the
receptor is not known.  In these cases, computational tools
are required to predict potential binding sites.  We have
implemented a simple modification to the milestone
generation technique to predict potential binding sites by
over-sampling regions of low energy near the protein
surface.  The algorithm first sorts the initial set of
randomly generated nodes in order of increasing energy.
Next, for each of the P lowest energy nodes, Q extra nodes
are created around it by sampling a region of configuration
space close to this initial node.  A new minimum energy
node is then selected from among the Q extra samples and
the process is iterated R times.  The initial set of P low-
energy nodes are selected so that their centers of mass are
at least 5 Å apart.  This process results in P distinct regions
of C-space that are heavily over-sampled.  The number of
extra samples generated in each of the P regions is Q*R.
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Table 1.  Execution times and number of connected components for each test case.

#dof
Sampling

time
Linking

time
Final
nodes

#connected
components

1ldm 7 9 sec 57 sec 6129 2
4ts1 9 27 sec 4 min 13 sec 6530 4
1stp 11 39 sec 4 min 43 sec 6635 5

The algorithm reports each of these P regions, as well as
the lowest energy milestones contained within them, as
potential active sites.

4.  Results

We have tested our path planning system on the following
three protein-ligand complexes:

1. PDB ID: 1ldm
Receptor: Lactate Dehydrogenase (2386 atoms, 309

residues)
Ligand: Oxamate (6 atoms, 7 degrees of freedom)

2. PDB ID: 4ts1
Receptor: Mutant of tyrosyl-transfer-RNA synthetase

(2423 atoms, 319 residues)
Ligand: L-leucyl-hydroxylamine (13 atoms, 9

degrees of freedom)

3. PDB ID: 1stp
Receptor: Streptavidin (901 atoms, 121 residues)
Ligand: Biotin (16 atoms, 11 degrees of freedom)

For each of the above cases, we obtained the 3D
coordinates of all atoms in the complex from the protein
data bank (PDB) [Bernstein et al., 1977].  The PDB file
contained the coordinates of the protein atoms as well as
the ligand atoms in their bound state.  Using these cases,
we tested our algorithm on the following three fronts:

1. Basic functionality:  Can the algorithm find a path to
the true binding configuration?  Do the number of
connected components (isolated graphs that do not
connect) found correspond to what can be reasonably
expected?

2. Characterizing the binding site:  Can the algorithm
distinguish the true binding configuration from other
potential binding configurations?

3. Predicting the binding site:  Can the algorithm predict
the true binding site using the iterative sampling
technique described in Section 3.4?

For each of the above tests we set the number of initial
samples to 4000.  From these 4000 nodes, 20 nodes with
lowest energy were selected to seed the iterative sampling
algorithm.  For each of these 20 nodes, the iterative
sampling step created 100 new samples, thus yielding a
total of 2000 extra nodes (P = 20, Q = 10, R = 10 in
section 3.4).  The total number of nodes before the
roadmap linking phase was therefore 6000.  The number of

nodes at the end of the linking phase was generally higher
than 6000 because of the extra nodes generated by the
connectivity enhancement algorithm.

Since each milestone is linked to several of its close
neighbors and most of the energetic information is
contained in the difficulty-weights associated with these
links, the number of nodes required to construct a useful
roadmap is not very large.  We therefore use 4000 initial
nodes to broadly cover the C-space of the ligand.  These
nodes are likely to reside within or close to a local energy
minimum since they are probabilistically accepted as
milestones based on their energy (the ratio of accepted to
rejected samples is about 1:10).  The low energy regions
close to the surface of the protein are examined in more
detail by the iterative sampling step which generates 2000
extra samples in these local regions of C-space.  The extra
samples increase the accuracy of the roadmap in these
regions of greater energetic variability and also improve
the likelihood of finding the true binding configuration (if
it is located within one of these regions) or other potential
binding configurations.

4.1  Basic functionality
For each of our three test cases, the algorithm was able to
connect the configuration space using 2 to 5 connected
components.  Since voids or narrow cavities do
occasionally occur within a protein structure or close to its
surface, it is likely that some of the randomly generated
nodes will lie within these regions thus yielding more than
one connected component.  In our tests, more than 98% of
the total nodes in the graph were contained within a single
connected component with only 2% of the nodes
distributed among the remaining few connected
components.  For all three cases the true binding
configuration was contained within the largest connected
component thus enabling paths from virtually all points in
C-space to this goal configuration.  Table 1 lists the
average execution times of our algorithm as well as the
number of nodes and connected components generated.
These tests were performed on a Silicon Graphics Octane
with a 195 MHz MIPS R10000 processor.  The number of
final nodes is higher than the initial nodes due to the
connectivity enhancement step described above.

4.2  Characterizing the binding site
We tested the biochemical validity of our algorithm by
examining whether or not it was able to distinguish the true
binding site from other low-energy sites on the protein



Table 2a. Average path weights for 1ldm.

Row
number

RMSD from
true binding

configuration (Å)

Configuration
energy (kcal/mol)

Avg path weight
entering

configuration

Avg path weight
leaving

configuration
0 0.00 -11.79 112.98 134.54
1 31.04 -13.65 85.07 109.94
2 27.49 -12.66 90.48 111.98
3 1.73 -11.72 113.81 137.28
4 28.99 -11.54 85.32 105.19
5 24.67 -11.31 86.26 103.95
6 29.84 -11.27 86.49 107.53
7 29.32 -11.04 85.24 104.64
8 27.07 -10.96 81.70 102.28
9 31.00 -10.13 87.69 104.50

10 28.24 -9.97 86.36 98.89

Table 2b. Average path weights for 4ts1.

Row
 number

RMSD from
true binding

configuration (Å)

Configuration
energy (kcal/mol)

Avg path weight
entering

configuration

Avg path weight
leaving

configuration
0 0.00 -19.44 130.73 173.76
1 1.91 -20.31 128.61 166.73
2 21.59 -15.92 105.65 118.72
3 15.16 -14.53 109.82 129.15
4 23.55 -14.39 111.87 134.96
5 20.59 -14.30 114.13 133.87
6 22.19 -13.97 113.84 135.90
7 24.62 -12.89 118.82 138.15
8 19.13 -12.74 115.45 136.72
9 17.05 -12.31 120.24 142.72

10 36.81 -11.81 115.48 131.98

Table 2c. Average path weights for 1stp.

Row
number

RMSD from
true binding

configuration (Å)

Configuration
energy (kcal/mol)

Avg path weight
entering

configuration

Avg path weight
leaving

configuration
0 0.00 -15.06 110.80 146.87
1 21.76 -15.79 80.78 108.42
2 27.14 -12.83 96.29 117.67
3 18.59 -12.82 85.84 101.24
4 23.52 -11.45 96.45 122.01
5 13.67 -11.36 86.51 106.05
6 15.18 -10.79 88.22 96.89
7 13.93 -10.68 95.14 116.92
8 14.63 -10.42 85.61 105.16
9 24.64 -9.96 85.71 105.17

10 20.43 -9.87 83.81 102.54

surface.  The two attributes we used to distinguish between
true and predicted binding configurations were the
absolute energy of the ligand and the average weight of all
paths entering and leaving the configuration.

Tables 2a, 2b, and 2c list the results of our comparison
of absolute energy and average path weights for the three

test cases.  The first row (row 0) in each table shows
energy and average weights for the true binding
configuration.  The remaining 10 rows in each table show
the average weights for the 10 lowest energy
configurations found by our iterative sampling strategy.
Note that each of these 10 configurations belongs to a



different low energy cluster.  They were obtained by
selecting the lowest energy configuration from each cluster
generated by the iterative sampling step, and sorting them
according to their energy.  Each row therefore represents
the lowest energy configuration within a cluster.

We observed that the absolute energy of the ligand was
not a strong discriminating factor between the true binding
site and other predicted low-energy sites.  In two of our
three test cases (1ldm and 1stp) the algorithm was able to
find ligand configurations outside the true binding site
with energies equal to or even slightly lower than the
energy of the ligand in its true binding configuration.  For
instance, rows 1 and 2 of Table 2a and row 1 of Table 2c
represent configurations found by the iterative sampling
technique that are distant from the true binding site and
have energies lower that the true binding configuration
(row 3 in Table 2a and row 1 in Table 2b are not included
in this list since they have low RMSD values and therefore
lie in the same site as the true binding configuration).  It is
possible that some configurations yield energy values
lower than the true binding configuration because of the
approximations of our grid based energy model.

The second criterion we examined was the average
difficulty weight of all paths entering and leaving a given
configuration.  Using this criterion, the algorithm was able
to clearly distinguish between the true binding
configuration and other predicted low-energy binding sites.
We observed that the average weight of all paths entering
and leaving the true binding configuration was
significantly higher than the weights for all other low-
energy configurations (including those with energy lower
than the true binding configuration).  Therefore, it was
significantly more difficult for the ligand to leave the true
binding site as compared to the predicted low-energy sites.
Furthermore, it was correspondingly more difficult for the
ligand to enter the true binding site as compared to other
low-energy sites.  While this latter result may seem
counter-intuitive at first, we believe that it indicates the
presence of a distinct energy barrier around the true
binding configuration that traps the ligand within the site
(see Discussion section below).  Note that row 3 in Table
2a and row 1 in Table 2b also show path weights that are
in the same range as the true binding configuration.  This
is due to the fact that the ligand configurations

corresponding to these rows are in fact close to the true
binding configuration (hence the low RMSD values) and
lie within the same binding site.  This indicates that
configurations close to the true binding configuration (i.e.,
within the same binding pocket) also share the
characteristic feature of having a high energy barrier
around them.

4.3  Predicting the binding site
The final test of our algorithm examined whether the
iterative sampling technique (Section 3.4) is able to find
the true binding configuration for each of the three protein-
ligand complexes.  The criterion used by the iterative
sampling algorithm to search for the true binding site is the
total energy of the configuration.  As observed in the
previous section, the total configuration energy is not the
optimal criterion for identifying the true binding site.
Hence, though the prediction algorithm was able to find a
configuration close to the true binding configuration in two
cases (1ldm and 4ts1), only one of these was correctly
ranked at the top of the list of predictions (4ts1).

Rows 1-10 of Tables 2a, 2b, and 2c represent the top 10
predictions from independent clusters, ranked according to
their absolute energy.  Note that since these clusters are
chosen to be about 5 Å apart and only one configuration
from each cluster is shown, each table can contain at most
one correct prediction of the true binding configuration.
For the case of 1ldm (Table 2a) the correct prediction has
an RMSD of 1.73 Å and is ranked 3rd.  For the case of
4ts1  (Table 2b) the correct prediction has an RMSD of
1.91 Å and is ranked 1st.  Note that for both these cases,
the correct predictions yield average path weights that are
similar to the true binding configuration and hence
significantly higher than all other predictions.  Therefore,
if the average path weights were used as the primary
sorting criterion the algorithm would be able to correctly
place the true binding site at the top of the list of
predictions for both these cases.

The iterative sampling algorithm was not able to find the
true binding site in the case of 1stp.  This may be due to
the fact that the ligand in this complex is bound in a very
tight pocket with a narrow opening on the surface of the
protein.  Hence, none of the 20 lowest energy nodes from
among the 4000 randomly generated nodes were close

Energy

Predicted
binding site

Predicted
binding site

True binding
site

15-20 kcal/mol
10-12 kcal/mol 10-12 kcal/mol

Figure 4.  A schematic representation of the energy barrier around the true binding site.



enough to the true binding site to allow the iterative
sampling technique to converge on to this site (see Section
3.5).

5.  Discussion

We have developed an algorithm based on robot motion
planning to study the dynamics of a ligand as it binds to
the receptor protein.  We use motion planning to alleviate
the Markov dependency of Monte Carlo simulation
methods, thus allowing the computation of kinetic
properties of binding in reasonable time.  Our technique
samples the space of all possible paths to a given
configuration and computes a statistical measure of the
relative difficulty of entering or leaving this configuration.

Tests of our algorithm on three different protein-ligand
complexes yielded surprising results.  We found that the
average weight of all paths entering or leaving the true
binding site was significantly greater than the weights for
all other potential binding sites on the protein.  Though the
higher weights for leaving the true binding site were
expected, our experiments also found that it was
significantly more difficult for the ligand to enter the true
binding site as compared to other low-energy sites.  While
these results may seem counter-intuitive at first, we believe
that they indicate the presence of an energy barrier around
the true binding site.  Figure 4 shows a schematic of a
possible energy contour that could yield results similar to
those we obtained.  As seen in this diagram, the true
binding site is surrounded by a distinct energy barrier that
significantly increases the difficulty of leaving this site.  At
the same time the energy barrier also makes it more
difficult for the ligand to enter this true binding site as
compared to other sites of equally low or lower energy.
Hence, though it is relatively more difficult for the ligand
to enter the true binding site, once it does enter it is very
difficult for it to leave this site.  The ligand is thus trapped
in the binding site by the energy barrier.  We believe that
the high difficulty weight for leaving the binding site
indicates a very low rate of dissociation (Koff), which
dominates the standard free energy of the reaction.  The
results in Tables 2a, 2b, and 2c also show that the average
weight of paths entering the true binding site is of the same
order as the weight of paths leaving the predicted sites.
Therefore, the difficulty of entering the true binding site is
approximately equal to the difficulty of leaving the
predicted sites.

Our algorithm for generating milestones for the roadmap
biases the sampling towards regions of low energy and
iteratively generates more samples around the lowest
energy configurations.  We use this process of iterative
over-sampling around the current minimum-energy ligand
configuration to predict potential binding sites on the
protein surface.  We found that in two of the three test
cases this simple algorithm was able to correctly find the
true binding site among the top 3 predictions.  By sorting
the predictions according to the path weights instead of

energy, the algorithm was able to correctly rank the true
binding site at the top of the list in both these cases.

We believe that computing the average weight of all
paths into and out of a particular site provides a valid
statistical measure for the relative difficulty of entering or
leaving the site.  Though the absolute value of these
difficulty weights may not be biochemically significant,
their relative values can be used to predict the relative rates
of binding and dissociation for different binding sites.  Our
results also show that the energy barriers found by our
algorithm are a unique feature of good binding sites and
can be used as a criterion for distinguishing the true
binding site from other predicted sites.  There are several
potential benefits of using our motion-planning model of
ligand binding as compared to other static models.  For
instance, examining the distribution of paths into and out
of the binding site can be used to help localize transition
states and other energy barriers that regulate the rate of
ligand binding and dissociation.  We plan to improve the
functionality of our technique by developing tools to
partition the space around a given binding site into shells
and compute the dynamics of ligand motion between each
of these shells.  This approach will allow us to study both
distant electrostatic channeling effects [Tan, 1993] as well
as detailed interactions within the binding site.  Since
receptor flexibility is an important factor in regulating
ligand binding, we are also developing methods to include
rotomer flexibility into the motion planning model.
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