INTRODUCTION

The most common mineral in the Earth’s lower mantle is MgSiO3 with the perovskite structure, in which Si4+ occupies octahedral “B” sites ([6]Si) and Mg2+ occupies central, eight- to twelve-coordinated “A” sites ([8]Mg) (Knittle and Jeanloz 1987; Zhang and Weidner 1999). After FeO and possibly Fe2O3, the most abundant substituent in this phase is Al2O3, which comprises about 2 to 4 wt% of the entire mantle (Anderson 1989; Wood and Rubie 1996). Despite large effects on phase equilibria (Kesson et al. 1995; Wood and Rubie 1996; Weidner and Wang 1998; Kubo and Akaogi 2000), elastic (Zhang and Weidner 1999; Brodholt 2000) and electrical (Dobson and Brodholt 2000) properties, and their consequences for understanding the large-scale structure of the Earth, the mechanism(s) by which Al2O3 dissolves in MgSiO3 perovskite are not fully understood.

Two types of solid solution have been proposed. A coupled substitution at both sites would maintain a 1:1 ratio of Mg/Si, with the composition remaining on the MgSiO3-Al2O3 binary:

\[\text{Mg}^{2+}_A + \text{Si}^{4+}_B \leftrightarrow \text{Al}^{3+}_A + \text{Al}^{3+}_B \]

In contrast, Al3+ could substitute at the B site, leaving O-atom vacancies in the structure and producing compositions on the MgSiO3-MgAlO2.5 join:

\[\text{Si}^{4+}_B + 1/2\text{O}^{2-} \leftrightarrow \text{Al}^{3+}_B + 1/2\text{V}^{0}_O \]

O-atom vacancy substitutions are well-known in perovskite-structured oxides, for example the well-studied system CaTiO3–CaFeO2.5 (Becerro et al. 1999; McCammon et al. 2000). Such materials have important technological applications, especially when the resulting oxide ion mobility provides anionic conductivity in sensors and fuel cell electrolytes (Navrotsky 1999; Kim and Grey 2002; Stebbins 2002). It has been suggested that the second mechanism may play an important role in the lower mantle, which is likely to contain an MgO-rich oxide phase (ferropericlase) as well as perovskite, favoring a ratio of Mg/Si > 1 in the latter (Navrotsky 1999; Brodholt 2000). O-atom vacancies are particularly interesting as they may be a “sink” for hydroxyl groups and hence water in the earth (Navrotsky 1999; Murakami, et al. 2002) and may have large effects on diffusivity, conductivity, strength, and creep rate of the mantle. Stoichiometric MgSiO3 perovskite, in contrast, apparently can accommodate very little OH in its structure (Bolfan-Casanova et al. 2000). As yet, however, there is no clear structural (as opposed to compositional) evidence for O-atom vacancies in MgSiO3-based perovskites.

Recent spectroscopic studies of Al-substituted perovskite have concentrated on the stoichiometric join, MgSiO3-Al2O3. X-ray absorption spectroscopy suggested that significant substitution occurs at both sites (Andrault et al. 1998). A high-field, high-resolution 27Al NMR study of similar material revealed Al at two distinct types of sites, with roughly equal populations, favoring the domination by the coupled substitution in at least this composition (Stebbins et al. 2001). One site showed the symmetrical octahedral geometry expected for the defect-free B site; the other was more distorted and disordered, with six or higher coordination, suggesting a partially collapsed...
A site. Even in these materials, however, the occasional presence of small amounts of stishovite (SiO₂) has suggested some deviation from this ideal composition. Theoretical calculations based on a “brownmillerite” structure (MgAl₂O₄, with 50% [⁴¹]Al and 50% [⁶]Al) for the O-atom vacancy end-member favored reaction (2) at low pressure and (1) at high pressure (Richardson and Brodholt 1998; Brodholt 2000); first-principles, density-functional theory calculations on larger unit cells with lower and more realistic Al contents suggested that reaction (1) may be slightly more enthalpically stable (Yamamoto et al. 2003). This conclusion was also suggested by recent solution calorimetric studies (Navrotsky et al. submitted), which pointed out, however, that the difference in enthalpies is not large and that both mechanisms could be stabilized at high temperature by the configurational entropy resulting from disorder of cations and/or vacancies. The latter study also demonstrated that in systems with excess MgO, it is possible to form perovskites with non-stoichiometric compositions close to Mg(Si₀.ₙ₆Al₀.₄)O₂₉₅, implying that O-atom vacancies are indeed present. Here, we apply ²⁷Al NMR to elucidate the mechanism or mechanisms at the atomic scale.

EXPERIMENTAL METHODS

Perovskite with a nominal composition of MgSi₁₆Al₁₆O₄₅₆, was synthesized with techniques similar to those recently described (Navrotsky et al. 2003) from reagent-grade oxides, including 0.1 wt% cobalt oxide to speed spin-lattice relaxation. After mixing and drying at 1000 °C, five samples were loaded into rhenum tubes and heated at 1600 °C and 27 GPa in a “6–8” multianvil apparatus (Kawai type) (Kubo and Akaogi 2000) for 3 h. Each sample was examined intact (uncrushed) by microfocus X-ray diffraction using a Rigaku RINT-2500V diffractometer (Kubo and Akaogi 2000); only the perovskite phase was observed. After the NMR experiments, extensive electron microprobe analyses were done on two samples. Although the small grain size and damage by the electron beam decreased analytical precision, it is clear that two types of perovskite grains were present in each of the two samples, with average compositions of (Mg₀.₉₅Al₀.₀₅)(Si₀.₉₅Al₀.₀₅)O₃ (Stebbins et al. 2001). The composition of peak “B” is consistent with similar to those reported for perovskites of approximate composition (Mg₀.₉₅Al₀.₀₅)(Si₀.₉₅Al₀.₀₅)O₃ (Stebbins et al. 2001). The derived NMR parameters of the most intense, narrow peak are the same within error; the mean quadrupolar coupling constant (C_Q) and isotropic chemical shift (δ_iso) for the broader peak are somewhat less than in the previous report, possibly due to some difference in ordering state resulting from different starting materials (compositions and glassy vs. crystalline) and run conditions. However, there are two major differences between the results from the “stoichiometric” vs. the “Si-deficient” samples. In the latter, the relative intensity of the B-site peak is consi-

![Figure 1](image1.png)

Figure 1. ²⁷Al MAS spectra for perovskite of nominal composition MgSi₁₆Al₁₆O₄₅₆, collected at fields shown. “A” indicates the A-site peak; “B” indicates the B-site peak; peak “C” may be due to five-coordinated Al at B sites adjacent to O-atom vacancies (see text). At 14.1 T, the spectrum with the “long” delay between rf pulses is the sum of spectra for delays of 4 and 10 s (which were identical in shape); the “short” delay data were acquired with a delay of 0.05 s. The latter was processed with less apodization than the former, resulting in a somewhat narrower “B” peak. At 18.8 T, a pulse delay of 0.20 s was used for the data shown. Simulations of the “A” and “C” peaks were done with the same parameters at both fields. For A, δ_max = −7 ± 2 ppm, C_Q = 7.5 ± 0.5 MHz; for C, δ_max = 15 ± 1 ppm, C_Q = 2.0 ± 0.5 MHz; for both, η was chosen as 0.75 but is poorly constrained. Quadrupolar peak shapes were convolved with a Gaussian to roughly simulate the effects of disorder and to produce the observed peak shapes. The position of peak “B” is consistent with δ_max = 5.8 ± 0.3 ppm and C_Q = 1 MHz (Stebbins et al. 2001).
erably greater than that of the A-site peak, while in the former both peaks have roughly the same area. The spectra of the Si-deficient samples also have a third prominent peak (‘C’) centered at about +14 ppm (Fig. 1); this feature is present at most as a small, unresolved shoulder in the spectrum for one of the “stoichiometric” samples. The relative areas (± roughly 4% absolute) for the three peaks in fully relaxed spectra are C: 14%, B: 59%, and A: 27%, which represent the fractions of the total Al in the combined samples at each of the three site types, when integrated over all of the grains (possibly of somewhat varying compositions).

The estimated δ_{iso} and C_Q of peak “C” (15 ppm and 2.0 MHz) are similar to published data for corundum (α-Al$_2$O$_3$) of 16 ppm and 2.39 MHz (Stebbins 1995), but those values do not reproduce the effect of field on the peak position as well. Given the total fraction of the alumina component in the sample and the relative area of peak “C”, only about 0.7 wt% of corundum would be needed. However, if corundum were present in particles greater than about 1 μm in diameter, even this small amount should have been detected by the EMPA mapping; the high temperature annealing time should probably allow grain growth to at least this size. A possible test of whether the breadth of this peak is due to disorder at a site in perovskite (expected to give a width constant in ppm) or to residual homonuclear (Al-Al) dipolar broadening in corundum (expected to give a width constant in Hz) is not definitive given the signal-to-noise ratio, peak overlap, and the relatively small ratio of the two fields used.

The large ratio of B-site to A-site intensities (≈2.2) implies that O-atom vacancies should be present in the structure of a significant fraction of the perovskite grains. However, it is unlikely that the Al$^{3+}$ cations giving rise to the relatively narrow, main, B-site peak ($C_Q = 1$ MHz, Stebbins et al. 2001) are adjacent to O-atom vacancies, as the chemical shift is far outside the known range for five-coordinated Al and a greater local distortion from cubic symmetry would be expected. Rather, we suggest that Al sites producing the small “C” peak may represent such defects. Although the chemical shift of 15 ppm is also outside the “normal” expected range for 51Al in silicates and oxides of about 30 to 40 ppm (Stebbins 1995), it is close to that for trigonal bipymramidal 51Al sites best known in SrAl$_2$O$_4$, where δ_{iso} has been accurately measured as 18.0 ppm ($C_Q = 2.1$ ppm) (Jansen et al. 1998). The likely cause for this extreme value of δ_{iso} is the unusually long mean Al-O bond distance of 0.195 nm for the 51Al sites (Kimura et al. 1990), compared to more “typical” values for 51Al in a mineral such as andalusite (Al$_2$SiO$_4$, 0.184 nm, Winter and Ghose 1979; $\delta_{iso} = 35$ ppm, Stebbins 1995). Unusually long bond distances might occur at defect 51Al sites in MgSiO$_3$ perovskite if the long-range structure does not allow Al-O bond distances in such defects to contract from typical octahedral to typical five-coordinate values. If this assignment is correct, the relatively low intensity of the “C” peak suggests that O-atom vacancies are not strongly ordered next to Al at B sites; instead, a near-random substitution on the O-atom lattice is suggested, an assumption used recently in estimating the configurational entropy resulting from Al substitution (Navrotsky et al. 2003). If peak “C” does not represent 51Al, then the overall results are much more difficult to interpret. Alternatively, it is conceivable that the 51Al sites have extremely large C_Q values (>15 MHz?), broadening their NMR peak enough to be difficult to observe in such small samples even at 18.8 T.

The chemical shift for the A-site peak (≈7 ppm) is at the extreme low end of values reported for 51Al in oxides and silicates (Stebbins 1995), and may represent Al with six or more O-atom neighbors and relatively long bond distances. O-atom vacancies could also reduce the average coordination number of Al$^{3+}$ at A sites to less than the value of eight for Mg$^{2+}$ in pure MgSiO$_3$ perovskite at ambient conditions. As for the “C” peak, simulation of the A-site peak required convolution of the quadrupolar line shape with a high degree of Gaussian broadening, indicating significant disorder introduced by variation in next-nearest neighbor cation and/or vacancy location. The B-site peak is also broader at the base than expected from its low C_Q, which again suggests some disorder.

The samples studied by NMR thus appear to contain Al$^{3+}$ at the B sites, with both symmetrical six-coordinate and distorted, five-coordinate geometries, and in large, central A sites. This finding is consistent with electron microprobe data indicating the presence of grains both with stoichiometric Al substitution (Mg/Si = 1) and with excess Al at the B sites (Mg/Si > 1). If, as we suggest, the locations of the O-atom vacancies in the latter type of material are not strongly correlated with those of the B sites containing Al$^{3+}$, then the MgSiO$_3$–MgAlO$_2$ binary (at least at low Al contents) resembles the well-studied CaTiO$_3$–CaFeO$_{2.5}$ system at low Fe$^{3+}$ contents. At an Fe component fraction of 0.11 (prepared at 1320 °C), for example, Mössbauer spectra showed that 63% of the Fe$^{3+}$ was at octahedral sites, with only 29% at pentahedral sites adjacent to one vacancy (McCannon et al. 2000) (8% of the Fe$^{3+}$ was at tetrahedral sites adjacent to pairs of vacancies).

The quantitative application of these results for samples at ambient temperature and pressure to more complex phases under actual mantle conditions necessarily requires assumptions about lack of significant structural rearrangement during quench and depressurization; evidence for some unquenchable Al/Mg disorder at very high temperature in spinel (MgAl$_2$O$_4$) has been presented, for example (Wood et al. 1986). However, our data do indicate that both proposed mechanisms of substitution of Al into MgSiO$_3$ perovskite are likely to be important in a mantle with Mg/Si > 1. Regardless of the detailed contributions from the two processes, the NMR results rule out two proposed models. An ideal, ordered “brownmillerite” structure is excluded by the observed absence of 51Al; an ordered model of pairs of B-site Al$^{3+}$ cations adjacent to each O-atom vacancy is not consistent with the relatively low concentration of 51Al. The O-atom vacancies that are present, and which are apparently mainly disordered, will need to be considered not only in calculations of thermodynamic mixing properties (and hence phase equilibria), but in models of elastic constants and transport phenomena as well. Our initial constraints on the extent of disorder among cations at A and B sites, and of O-atom vacancies, will lead to more accurate estimation of the configurational entropy, which is in turn critical to extending thermodynamic calculations to the high temperatures of the lower mantle. The interactions among Al$^{3+}$ and other substitu-
ents, notably Fe$^{2+}$ and Fe$^{3+}$ (McCrumon 1997) will need to be considered for real mantle compositions; spectroscopic results for more homogeneous samples are of course desirable. Finally, a defect-rich perovskite may serve as a significant host for water in the lower mantle, with important implications for the thermal and degassing history of the earth (Navrotsky 1999; Murakami et al. 2002).

ACKNOWLEDGMENTS

We thank D. Rice and E. Williams for access to and assistance with 800 MHz spectrometer at Varian Inc. in Palo Alto, and T. Sugawara and E. Takahashi for help with the EPMA work. This work was supported by NSF grant EAR 0104926 to J. Stebbins and grants in aid for scientific research from JSPS.

REFERENCES CITED